【題目】九(1)班同學在上學期的社會實踐活動中,對學校旁邊的山坡護墻和旗桿進行了測量.

(1)如圖1,第一小組用一根木條CD斜靠在護墻上,使得DB與CB的長度相等,如果測量得到∠CDB=38°,求護墻與地面的傾斜角α的度數(shù).
(2)如圖2,第二小組用皮尺量的EF為16米(E為護墻上的端點),EF的中點離地面FB的高度為1.9米,請你求出E點離地面FB的高度.
(3)如圖3,第三小組利用第一、第二小組的結(jié)果,來測量護墻上旗桿的高度,在點P測得旗桿頂端A的仰角為45°,向前走4米到達Q點,測得A的仰角為60°,求旗桿AE的高度(精確到0.1米).
備用數(shù)據(jù):tan60°=1.732,tan30°=0.577, =1.732, =1.414.

【答案】
(1)

解:∵BD=BC,

∴∠CDB=∠DCB,

∴∠α=2∠CDB=2×38°=76°


(2)

解:如圖2,設(shè)EF的中點為M,過M作MN⊥BF,垂足為點N,

過點E作EH⊥BF,垂足為點H,

∵MN∥EH,MN=1.9,

∴EH=2MN=3.8(米),

∴E點離地面FB的高度是3.8米


(3)

解:如圖3,延長AE交直線PB于點C,

設(shè)AE=x,則AC=x+3.8,

∵∠APB=45°,

∴PC=AC=x+3.8,

∵PQ=4,

∴CQ=x+3.8﹣4=x﹣0.2,

∵tan∠AQC= =tan60°=

= ,

x= ≈5.7,

∴AE≈5.7(米).

答;旗桿AE的高度約是5.7米


【解析】(1)根據(jù)∠α=2∠CDB即可得出答案;(2)設(shè)EF的中點為M,過M作MN⊥BF,垂足為點N,過點E作EH⊥BF,垂足為點H,根據(jù)EH=2MN即可求出E點離地面FB的高度;(3)延長AE,交PB于點C,設(shè)AE=x,則AC=x+3.8,CQ=x﹣0.2,根據(jù) = ,得出x+3.8x﹣0.2=3,求出x即可.
【考點精析】本題主要考查了關(guān)于坡度坡角問題和關(guān)于仰角俯角問題的相關(guān)知識點,需要掌握坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面與水平面的夾角記作A(叫做坡角),那么i=h/l=tanA;仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】寧波火車站北廣場將于2015年底投入使用,計劃在廣場內(nèi)種植A,B兩種花木共6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應分別安排多少人種植A花木和B花木,才能確保同時完成各自的任務(wù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“綜合與實踐”學習活動準備制作一組三角形,記這些三角形的三邊分別為a,b,c,并且這些三角形三邊的長度為大于1且小于5的整數(shù)個單位長度.
(1)用記號(a,b,c)(a≤b≤c)表示一個滿足條件的三角形,如(2,3,3)表示邊長分別為2,3,3個單位長度的一個三角形.請列舉出所有滿足條件的三角形.
(2)用直尺和圓規(guī)作出三邊滿足a<b<c的三角形(用給定的單位長度,不寫作法,保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了估計魚塘中成品魚(個體質(zhì)量在0.5kg及以上,下同)的總質(zhì)量,先從魚塘中捕撈50條成品魚,稱得它們的質(zhì)量如表:

質(zhì)量/kg

0.5

0.6

0.7

1.0

1.2

1.6

1.9

數(shù)量/條

1

8

15

18

5

1

2

然后做上記號再放回水庫中,過幾天又捕撈了100條成品魚,發(fā)現(xiàn)其中2條帶有記號.
(1)請根據(jù)表中數(shù)據(jù)補全如圖的直方圖(各組中數(shù)據(jù)包括左端點不包括右端點).
(2)根據(jù)圖中數(shù)據(jù)分組,估計從魚塘中隨機捕一條成品魚,其質(zhì)量落在哪一組的可能性最大?
(3)根據(jù)圖中數(shù)據(jù)分組,估計魚塘里質(zhì)量中等的成品魚,其質(zhì)量落在哪一組內(nèi)?
(4)請你用適當?shù)姆椒ü烙嬼~塘中成品魚的總質(zhì)量(精確到1kg).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把標準紙一次又一次對開,可以得到均相似的“開紙”.現(xiàn)在我們在長為2 、寬為1的矩形紙片中,畫兩個小矩形,使這兩個小矩形的每條邊都與原矩形紙的邊平行,或小矩形的邊在原矩形的邊上,且每個小矩形均與原矩形紙相似,然后將它們剪下,則所剪得的兩個小矩形紙片周長之和的最大值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=4,射線BM和AB互相垂直,點D是AB上的一個動點,點E在射線BM上,BE= DB,作EF⊥DE并截取EF=DE,連結(jié)AF并延長交射線BM于點C.設(shè)BE=x,BC=y,則y關(guān)于x的函數(shù)解析式是(
A.y=﹣
B.y=﹣
C.y=﹣
D.y=﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx(a≠0)的圖象經(jīng)過點A(1,4),對稱軸是直線x=﹣ ,線段AD平行于x軸,交拋物線于點D.在y軸上取一點C(0,2),直線AC交拋物線于點B,連結(jié)OA,OB,OD,BD.

(1)求該二次函數(shù)的解析式;
(2)求點B坐標和坐標平面內(nèi)使△EOD∽△AOB的點E的坐標;
(3)設(shè)點F是BD的中點,點P是線段DO上的動點,問PD為何值時,將△BPF沿邊PF翻折,使△BPF與△DPF重疊部分的面積是△BDP的面積的 ?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=﹣x2+2bx+c與x軸交于點A、B(點A在點B的右側(cè)),且與y軸正半軸交于點C,已知A(2,0)
(1)當B(﹣4,0)時,求拋物線的解析式;
(2)O為坐標原點,拋物線的頂點為P,當tan∠OAP=3時,求此拋物線的解析式;
(3)O為坐標原點,以A為圓心OA長為半徑畫⊙A,以C為圓心, OC長為半徑畫圓⊙C,當⊙A與⊙C外切時,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技與經(jīng)濟的發(fā)展,中國廉價勞動力的優(yōu)勢開始逐漸消失,而作為新興領(lǐng)域的機器人產(chǎn)業(yè)則迅速崛起,機器人自動化線的市場也越來越大,并且逐漸成為自動化生產(chǎn)線的主要方式,某化工廠要在規(guī)定時間內(nèi)搬運1200千元化工原料.現(xiàn)有A,B兩種機器人可供選擇,已知A型機器人比B型機器人每小時多搬運30千克,A型機器人搬運900千克所用的時間與B型機器人搬運600千克所用的時間相等.
(1)兩種機器人每小時分別搬運多少化工原料?
(2)該工廠原計劃同時使用這兩種機器人搬運,工作一段時間后,A型機器人又有了新的搬運任務(wù),但必須保證這批化工原料在11小時內(nèi)全部搬運完畢.求:A型機器人至少工作幾個小時,才能保證這批化工原料在規(guī)定的時間內(nèi)完成.

查看答案和解析>>

同步練習冊答案