【題目】寧波火車站北廣場(chǎng)將于2015年底投入使用,計(jì)劃在廣場(chǎng)內(nèi)種植A,B兩種花木共6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時(shí)種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時(shí)完成各自的任務(wù)?
【答案】
(1)解:設(shè)B花木數(shù)量為x棵,則A花木數(shù)量是(2x﹣600)棵,由題意得:
x+2x﹣600=6600,
解得:x=2400,
2x﹣600=4200,
答:B花木數(shù)量為2400棵,則A花木數(shù)量是4200棵
(2)解:設(shè)安排a人種植A花木,由題意得:
,
解得:a=14,
經(jīng)檢驗(yàn):a=14是原分式方程的解,
26﹣a=26﹣14=12,
答:安排14人種植A花木,12人種植B花木
【解析】(1)首先設(shè)B花木數(shù)量為x棵,則A花木數(shù)量是(2x﹣600)棵,由題意得等量關(guān)系:種植A,B兩種花木共6600棵,根據(jù)等量關(guān)系列出方程,再解即可;(2)首先設(shè)安排a人種植A花木,由題意得等量關(guān)系:a人種植A花木所用時(shí)間=(26﹣a)人種植B花木所用時(shí)間,根據(jù)等量關(guān)系列出方程,再解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖題:
(1)如圖,將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°后得到△A1B1C1 . 請(qǐng)你畫出旋轉(zhuǎn)后的△A1B1C1;
(2)請(qǐng)你畫出下面“蒙古包”的左視圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強(qiáng)與小剛都住在安康小區(qū),在同一所學(xué)校讀書,某天早上,小強(qiáng)7:30從安康小區(qū)站乘坐校車去學(xué)校,途中需停靠?jī)蓚(gè)站點(diǎn)才能到達(dá)學(xué)校站點(diǎn),且每個(gè)站點(diǎn)停留2分鐘,校車行駛途中始終保持勻速,當(dāng)天早上,小剛7:39從安康小區(qū)站乘坐出租車沿相同路線出發(fā),出租車勻速行駛,比小強(qiáng)乘坐的校車早1分鐘到學(xué)校站點(diǎn),他們乘坐的車輛從安康小區(qū)站出發(fā)所行使路程y(千米)與行駛時(shí)間x(分鐘)之間的函數(shù)圖象如圖所示.
(1)求點(diǎn)A的縱坐標(biāo)m的值;
(2)小剛乘坐出租車出發(fā)后經(jīng)過多少分鐘追到小強(qiáng)所乘坐的校車?并求此時(shí)他們距學(xué)校站點(diǎn)的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=120°,AB=10cm,點(diǎn)P是這個(gè)菱形內(nèi)部或邊上的一點(diǎn).若以P,B,C為頂點(diǎn)的三角形是等腰三角形,則P,A(P,A兩點(diǎn)不重合)兩點(diǎn)間的最短距離為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,E,F(xiàn)是對(duì)角線BD上的兩點(diǎn),如果添加一個(gè)條件,使△ABE≌△CDF,則添加的條件不能為( )
A.BE=DF
B.BF=DE
C.AE=CF
D.∠1=∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,過點(diǎn)(﹣2,3)的直線l經(jīng)過一、二、三象限,若點(diǎn)(0,a),(﹣1,b),(c,﹣1)都在直線l上,則下列判斷正確的是( )
A.a<b
B.a<3
C.b<3
D.c<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E為CD的中點(diǎn),F(xiàn)為BE上的一點(diǎn),連結(jié)CF并延長(zhǎng)交AB于點(diǎn)M,MN⊥CM交射線AD于點(diǎn)N.
(1)當(dāng)F為BE中點(diǎn)時(shí),求證:AM=CE;
(2)若 =2,求 的值;
(3)若 =n,當(dāng)n為何值時(shí),MN∥BE?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC是⊙O的直徑,AC切⊙O于點(diǎn)C,AB交⊙O于點(diǎn)D,E為AC的中點(diǎn),連結(jié)DE.
(1)若AD=DB,OC=5,求切線AC的長(zhǎng);
(2)求證:ED是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班同學(xué)在上學(xué)期的社會(huì)實(shí)踐活動(dòng)中,對(duì)學(xué)校旁邊的山坡護(hù)墻和旗桿進(jìn)行了測(cè)量.
(1)如圖1,第一小組用一根木條CD斜靠在護(hù)墻上,使得DB與CB的長(zhǎng)度相等,如果測(cè)量得到∠CDB=38°,求護(hù)墻與地面的傾斜角α的度數(shù).
(2)如圖2,第二小組用皮尺量的EF為16米(E為護(hù)墻上的端點(diǎn)),EF的中點(diǎn)離地面FB的高度為1.9米,請(qǐng)你求出E點(diǎn)離地面FB的高度.
(3)如圖3,第三小組利用第一、第二小組的結(jié)果,來測(cè)量護(hù)墻上旗桿的高度,在點(diǎn)P測(cè)得旗桿頂端A的仰角為45°,向前走4米到達(dá)Q點(diǎn),測(cè)得A的仰角為60°,求旗桿AE的高度(精確到0.1米).
備用數(shù)據(jù):tan60°=1.732,tan30°=0.577, =1.732, =1.414.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com