【題目】某書店響應(yīng)國家中華優(yōu)秀傳統(tǒng)文化經(jīng)典進(jìn)書店的號召,用2100元購進(jìn)某經(jīng)典讀本若干套,很快售完,該店又用4500元購進(jìn)第二批該經(jīng)典讀本若干套,進(jìn)貨量是第一批的2倍,但每套的進(jìn)價比第一批提高了10元.求:

(1)該店這兩批經(jīng)典讀本各購進(jìn)多少套?

(2)若第一批該經(jīng)典讀本的售價是170元套,該店經(jīng)理想讓這兩批經(jīng)典讀本售完后的總利潤不低于1950元,則第二批該經(jīng)典讀本每套至少要售多少元?

【答案】(1) 第一批經(jīng)典讀本購進(jìn)15套,第二批購進(jìn)30套;(2) 200元.

【解析】

(1)設(shè)第一批經(jīng)典讀本購進(jìn)x套,則第二批購進(jìn)2x套,再根據(jù)等量關(guān)系:第二批進(jìn)貨量是第一批的2倍可得方程;
(2)設(shè)第二批該經(jīng)典讀本每套售價為y元,由利潤=售價-進(jìn)價,這兩批經(jīng)典讀本售完后的總利潤不低于1950元,可列不等式求解.

解:(1)設(shè)第一批經(jīng)典讀本購進(jìn)x套,則第二批購進(jìn)2x套,

根據(jù)題意得:

解得:x=15,

經(jīng)檢驗(yàn),x=15是原方程的解,

2x=30.

答:第一批經(jīng)典讀本購進(jìn)15套,第二批購進(jìn)30套.

(2)設(shè)第二批該經(jīng)典讀本每套售價為y元,

根據(jù)題意得:

解得:y≥200.

答:第二批該經(jīng)典讀本每套至少要售200元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)某種茶壺、茶杯共200個進(jìn)行銷售,其中茶杯的數(shù)量是茶壺數(shù)量的5倍還多20個.銷售方式有兩種:(1)單個銷售;(2)成套銷售.相關(guān)信息如下表:

進(jìn)價(元/

單個售價(元/

成套售價(元/套)

茶壺

24

a

55

茶杯

4

a﹣30

備注:(1)一個茶壺和和四個茶杯配成一套(如圖);

(2)利潤=(售價﹣進(jìn)價)×數(shù)量

(1)該商店購進(jìn)茶壺和茶杯各有多少個?

(2)已知甲顧客花180元購買的茶壺數(shù)量與乙顧客花30元購買的茶杯數(shù)量相同.

①求表中a的值.

②當(dāng)該商店還剩下20個茶壺和100個茶杯時,商店將這些茶壺和茶杯中的一部分按成套銷售,其余按單個銷售,這120個茶壺和茶杯全部售出后所得的利潤為365元.問成套銷售了多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則|a﹣b+c|+|2a+b|=(
A.a+b
B.a﹣2b
C.a﹣b
D.3a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn) D AB的中點(diǎn).

(1)如果點(diǎn) P 在線段 BC 上以 1cm/s 的速度由點(diǎn) B 向點(diǎn) C 運(yùn)動,同時,點(diǎn) Q 在線段 CA 上由點(diǎn) C 向點(diǎn) A 運(yùn)動.

若點(diǎn) Q 的運(yùn)動速度與點(diǎn) P 的運(yùn)動速度相等,經(jīng)過 1 秒后,△BPD △CQP 是否全等,請說明理由;

若點(diǎn) Q 的運(yùn)動速度與點(diǎn) P 的運(yùn)動速度不相等,當(dāng)點(diǎn) Q 的運(yùn)動速度為多少時,能夠使△BPD △CQP 全等?

(2)若點(diǎn) Q 以②中的運(yùn)動速度從點(diǎn) C 出發(fā),點(diǎn) P 以原來的運(yùn)動速度從點(diǎn) B 同時出發(fā),都逆時針沿△ABC 三邊運(yùn)動,則經(jīng)過 后,點(diǎn) P 與點(diǎn) Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九年級數(shù)學(xué)興趣小組想測量建筑物AB的高度.他們在C處仰望建筑物頂端,測得仰角為48°,再往建筑物的方向前進(jìn)6米到達(dá)D處,測得仰角為64°,求建筑物的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:MON=30°,點(diǎn)A1、A2、A3在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過△ABC的三個頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線AC下方拋物線上的動點(diǎn).

(1)求拋物線的解析式;
(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時,求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時,在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在三角形ABC中,AB=AC,D是底邊上的中點(diǎn),BE垂直AC于點(diǎn)E,①∠ABC=ACB;ADBC;③∠BAD=CBE;AB=2BD,其中正確的有___________.

查看答案和解析>>

同步練習(xí)冊答案