【題目】A為頂點的等腰ABC中,∠ABC、∠ACB的平分線相交于點D,過點D作EFBC分別交AB、AC于E、F.

(1)求證:BE=DE;

(2)若ABC的周長比AEF的周長大10,試求出BC的長度.

【答案】(1)詳見解析;(2)10.

【解析】

(1)由等腰三角形的性質(zhì)得到∠ABC=∠ACB,根指平行線的性質(zhì)得到∠AEF=∠ABC,由外角性質(zhì)即可得到結(jié)論

(2)根據(jù)等腰三角形的性質(zhì)和三角形的周長的計算公式即可解題。

解:(1)∵AB=AC,

∴∠ABC=∠ACB,

∵EF∥BC,

∴∠AEF=∠ABC,∠EDB=∠DBC,

∵∠ABC和ACB的平分線交于點D,

∴∠EBD=∠DBC,

又∵∠AEF=∠EBD+∠BDE

∴∠EBD=∠BDE

BE=DE;

(2)由(1)證得BE=DE,

同理DF=CF,

∴△AEF的周長=AB+AC,

∵△ABC的周長比AEF的周長大10,

∴BC=AB+AC+BC-AB-AC=10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為15,AG=CH=12,BG=DH=9,連接GH,則線段GH的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

國際比賽的足球場長在100m110m之間,寬在64m75m之間,為了迎接2015年的亞洲杯,某地建設(shè)了一個長方形的足球場,其長是寬的1.5倍,面積是7560m2請你判斷這個足球場能用于國際比賽嗎?并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過原點的拋物線y=﹣x2﹣2mx(m>1)與x軸的另一個交點為A.過點P(﹣1,m)作直線PD⊥x軸于點D,交拋物線于點B,BC∥x軸交拋物線于點C.

(1)當(dāng)m=2時.
①求線段BC的長及直線AB所對應(yīng)的函數(shù)關(guān)系式;
②若動點Q在直線AB上方的拋物線上運動,求點Q在何處時,△QAB的面積最大?
③若點F在坐標(biāo)軸上,且PF=PC,請直接寫出符合條件的點F在坐標(biāo);
(2)當(dāng)m>1時,連接CA、CP,問m為何值時,CA⊥CP?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同。

(1)籃球和排球的單價各是多少元?

(2)若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司欲招聘一名公關(guān)人員,對甲、乙、丙、丁四位候選人進(jìn)行了面試和筆試,他們的成績?nèi)绫恚?/span>

候選人

測試成績

(百分制)

面試

86

92

90

83

筆試

90

83

83

92

如果公司認(rèn)為,作為公關(guān)人員面試的成績應(yīng)該比筆試的成績更重要,并分別賦予它們的權(quán).根據(jù)四人各自的平均成績,公司將錄。ā 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小方與同學(xué)一起去郊游,看到一棵大樹斜靠在一小土坡上,他想知道樹有多長,于是他借來測角儀和卷尺.如圖,他在點C處測得樹AB頂端A的仰角為30°,沿著CB方向向大樹行進(jìn)10米到達(dá)點D,測得樹AB頂端A的仰角為45°,又測得樹AB傾斜角∠1=75°.

(1)求AD的長.
(2)求樹長AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,,若動點P從點C開始,按的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.

出發(fā)2秒后,求的面積;

當(dāng)t為幾秒時,BP平分;

t為何值時,為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖信息,L1為走私船,L2為我公安快艇,航行時路程與時間的函數(shù)圖象,問

(1)在剛出發(fā)時我公安快艇距走私船多少海里?

(2)計算走私船與公安快艇的速度分別是多少?

(3)寫出L1,L2的解析式

(4)問6分鐘時兩艇相距幾海里.

(5)猜想,公安快艇能否追上走私船,若能追上,那么在幾分鐘追上?

查看答案和解析>>

同步練習(xí)冊答案