【題目】已知:如圖,內(nèi)接于,,點為弦的中點,的延長線交于點,聯(lián)結(jié),過點作交于點,聯(lián)結(jié).
(1)求證:;
(2)如果的半徑為8,且,,求的長.
【答案】(1)證明見解析;(2)CF=12-12.
【解析】
由等腰三角形的性質(zhì)得出,由垂徑定理得出,,證出DE是的中位線得出,結(jié)合BF⊥DE證出,由角的互余關(guān)系即可得出結(jié)論;
連接證出是等腰直角三角形,得出再由等腰三角形的性質(zhì)得出即可得出結(jié)論.
證明:如圖1所示:
,,
直線AD經(jīng)過圓心O,
,,
點E為弦AB的中點,
是的中位線.
,
,
,
,
.
,
,
,
又,
,
;
證明:連接如圖所示:
,,
是等腰直角三角形,
.
,
,且,
.
∴∠BFC= =45°,
,
和△CFG均為等腰直角三角形,
AB.CG=FG=FC;
∵AC=AB=BF=12
∴AG=BG=6,CG=FG=12-6
∴CF=(12-6)×=12-12
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,小聰同學(xué)利用直尺和圓規(guī)完成了如下操作:
①分別以點和為圓心,以大于的長為半徑作弧,兩弧相交于點和;
②作直線,交于點.
請你觀察圖形解答下列問題:
(1)與的位置關(guān)系:
直線是線段的____________線;
(2)若,,求矩形的對角線的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線分別與x軸,y軸交于點,點C是第一象限內(nèi)的一點,且,拋物線經(jīng)過兩點,與x軸的另一交點為D.
(1)求此拋物線的解析式;
(2)判斷直線與的位置關(guān)系,并證明你的結(jié)論;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,E是AC的中點,AE=2.經(jīng)過點E作△ABE外接圓的切線交BC于點D,過點C作CF⊥BC交BE的延長線于點F,連接FD交AC于點H,FD平分∠BFC.
(1)求證:DE=DC;
(2)求證:HE=HC=1;
(3)求BD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將沿弦折疊,使折疊后的劣弧恰好經(jīng)過圓心O,連接并延長交于點C,點P是優(yōu)弧上的動點,連接.
(1)如圖,用尺規(guī)面出折疊后的劣弧所在圓的圓心,并求出的度數(shù);
(2)如圖,若是的切線,,求線段的長;
(3)如圖,連接,過點B作的重線,交的延長線于點D,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某通訊公司就上寬帶網(wǎng)推出A,B,C三種月收費方式.這三種收費方式每月所需的費用y(元與上網(wǎng)時間x(h)的函數(shù)關(guān)系如圖所示,則下列判斷錯誤的是
A. 每月上網(wǎng)時間不足25h時,選擇A方式最省錢 B. 每月上網(wǎng)費用為60元時,B方式可上網(wǎng)的時間比A方式多
C. 每月上網(wǎng)時間為35h時,選擇B方式最省錢 D. 每月上網(wǎng)時間超過70h時,選擇C方式最省錢
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,菱形ABCD的頂點A在x軸的正半軸上,菱形ABCD的邊長為2,頂點C的坐標(biāo)為.
(1)求圖像過點B的反比例函數(shù)的解析式;
(2)求圖像過點A,B的一次函數(shù)的解析式;
(3)在第一象限內(nèi),當(dāng)以上所求一次函數(shù)的圖像在所求反比例函數(shù)的圖像下方時,請直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:在一次聚會上,規(guī)定每兩個人見面必須握手,且只握手1次.
(1)若參加聚會的人數(shù)為3,則共握手___次;若參加聚會的人數(shù)為5,則共握手___次;
(2)若參加聚會的人數(shù)為(為正整數(shù)),則共握手___次;
(3)若參加聚會的人共握手28次,請求出參加聚會的人數(shù).
拓展:嘉嘉給琪琪出題:“若線段上共有個點(含端點,),線段總數(shù)為30,求的值.”
琪琪的思考:“在這個問題上,線段總數(shù)不可能為30.”琪琪的思考對嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景
(1)如圖1,△ABC中,DE∥BC分別交AB,AC于D,E兩點,過點E作EF∥AB交BC于點F.請按圖示數(shù)據(jù)填空:
四邊形DBFE的面積 ,
△EFC的面積 ,
△ADE的面積 .
探究發(fā)現(xiàn)
(2)在(1)中,若,,DE與BC間的距離為.請證明.
拓展遷移
(3)如圖2,□DEFG的四個頂點在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試?yán)茫?/span>2)中的結(jié)論求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com