【題目】某超市在春節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣和優(yōu)惠,在每個轉(zhuǎn)盤中指針指向每個區(qū)域的可能性均相同,若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤,區(qū)域?qū)?yīng)的優(yōu)惠方式如下,A1,A2,A3區(qū)域分別對應(yīng)9折8折和7折優(yōu)惠,B1,B2,B3,B4區(qū)域?qū)?yīng)不優(yōu)惠?本次活動共有兩種方式.
方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向折扣區(qū)域時,所購物品享受對應(yīng)的折扣優(yōu)惠,指針指向其他區(qū)域無優(yōu)惠;
方式二:同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針均指向折扣區(qū)域時,所購物品享受折上折的優(yōu)惠,其他情況無優(yōu)惠.
(1)若顧客選擇方式一,則享受優(yōu)惠的概率為 ;
(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能顧客享受折上折優(yōu)惠的概率.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象與x軸交于點A(﹣1,0),與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點B(,n).連接OB,若S△AOB=1.
(1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;
(2)直接寫出不等式組 的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點兩點;與軸交于點;對稱軸為直線,點的坐標為,則下列結(jié)論:①;②;③;④,⑤其中正確的結(jié)論個數(shù)是( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個蓄水池有甲、乙兩個注水管和一個排水管丙,三個水管均已關(guān)閉,已知乙注水管的注水速度為10升/分.先打開乙注水管4分鐘,再打開甲注水管,甲、乙兩個水管均注水20分鐘.設(shè)甲注水管的工作時間為(分),甲注水管的注水量(升)與時間(分)的函數(shù)圖象為線段,乙注水管的注水量(升)與時間(分)的函數(shù)圖象為線段,如圖所示.
(1)求甲注水管的總注水量;
(2)求線段所對應(yīng)的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)乙注水管打開的16分鐘后,打開丙出水管.已知出水管丙的排水速度為20升/分,求丙出水管打開多長時間能將蓄水池的水排空.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC.
(1)求證:DB平分∠ADC;
(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1中是小區(qū)常見的漫步機,當人踩在踏板上,握住扶手,像走路一樣抬腿,就會帶動踏板連桿繞軸旋轉(zhuǎn),從側(cè)面看圖2,立柱DE高1.7m,AD長0.3m,踏板靜止時從側(cè)面看與AE上點B重合,BE長0.2m,當踏板旋轉(zhuǎn)到C處時,測得∠CAB=42°,求此時點C距離地面EF的高度.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“為了安全,請勿超速”.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時,為了檢測車輛是否超速,在公路MN旁設(shè)立了觀測點C,從觀測點C測得一小車從點A到達點B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請說明理由.
(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從一塊圓形紙片上剪出一個圓心角為90°的扇形ABC,使點A、B、C在圓周上,將剪下的扇形作為一個圓錐側(cè)面,如果圓錐的高為,則這塊圓形紙片的直徑為( )
A. 12cm B. 20cm C. 24cm D. 28cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A、B兩點,與y軸交于C點,直線BD交拋物線于點D,并且D(2,3),tan∠DBA=.
(1)求拋物線的解析式;
(2)已知點M為拋物線上一動點,且在第三象限,順次連接點B、M、C、A,求四邊形BMCA面積的最大值;
(3)在(2)中四邊形BMCA面積最大的條件下,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com