【題目】圖1中是小區(qū)常見的漫步機(jī),當(dāng)人踩在踏板上,握住扶手,像走路一樣抬腿,就會(huì)帶動(dòng)踏板連桿繞軸旋轉(zhuǎn),從側(cè)面看圖2,立柱DE高1.7m,AD長0.3m,踏板靜止時(shí)從側(cè)面看與AE上點(diǎn)B重合,BE長0.2m,當(dāng)踏板旋轉(zhuǎn)到C處時(shí),測得∠CAB=42°,求此時(shí)點(diǎn)C距離地面EF的高度.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)
【答案】0.5
【解析】
根據(jù)題意得出AC=AB=1.2m,過點(diǎn)C作CG⊥AB于G,過點(diǎn)C作CH⊥EF于點(diǎn)H,根據(jù)Rt△ACG的三角函數(shù)值求出AG的長度,從而得出EG的長度,根據(jù)矩形的性質(zhì)得出CH=EG.
由題意,得AE=DE﹣AD=1.7﹣0.3=1.4m,AB=AE﹣BE=1.4﹣0.2=1.2m,
由旋轉(zhuǎn),得AC=AB=1.2m,過點(diǎn)C作CG⊥AB于G,過點(diǎn)C作CH⊥EF于點(diǎn)H,
在Rt△ACG中,∠AGC=90°,∠CAG=42°, cos∠CAG=,
∴AG=ACcos∠CAG=1.2×cos42°=1.2×0.74≈0.9m,
∴EG=AE﹣AG≈1.4﹣0.9=0.5m,∴CH=EG=0.5m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=25°,O為AB的中點(diǎn). 將OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)θ °至OP(0<θ<180),當(dāng)△BCP恰為軸對(duì)稱圖形時(shí),θ的值為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一木質(zhì)圓柱筆筒的高為9cm,底面半徑為2cm,現(xiàn)要圍繞筆筒的表面由A到A1(A,A1在圓柱的同一軸截面上)鑲上一條銀色金屬線作為裝飾,則這條金屬線的最短長度是_________cm.(π取3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED為菱形;
(2)連接AE、BE,AE與BE相等嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,直線y=-x+3與坐標(biāo)軸分別交于點(diǎn)A,B,與直線y=x交于點(diǎn)C,線段OA上的點(diǎn)Q以每秒1個(gè)單位的速度從點(diǎn)O出發(fā)向點(diǎn)A作勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連結(jié)CQ.
(1)求出點(diǎn)C的坐標(biāo);
(2)若△OQC是等腰直角三角形,則t的值為________;
(3)若CQ平分△OAC的面積,求直線CQ對(duì)應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對(duì)角線AC上,折痕為CE,且D點(diǎn)落在對(duì)角線D′處.若AB=3,AD=4,則ED的長為
A. B.3 C.1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,過點(diǎn)的直線與直線相交于點(diǎn),動(dòng)點(diǎn)在線段和射線上運(yùn)動(dòng).
(1)求直線的表達(dá)式.
(2)求的面積.
(3)直接寫出使的面積是面積的的點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)的圖像與軸交于點(diǎn)A,與軸交于點(diǎn)B,點(diǎn)C是直線AB上一點(diǎn),它的坐標(biāo)為(,2),經(jīng)過點(diǎn)C作直線CD∥軸交軸于點(diǎn)D.
(1)求點(diǎn)C的坐標(biāo)及線段AB的長;
(2)已知點(diǎn)P是直線CD上一點(diǎn).
①若△POC的面積是4,求點(diǎn)P的坐標(biāo);
②若△POC是直角三角形,請(qǐng)直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com