【題目】執(zhí)行右面的程序框圖,如果輸入的N=10,那么輸出的S=( )
A.
B.
C.
D.
【答案】B
【解析】解:框圖首先給累加變量S和循環(huán)變量i賦值, S=0+1=1,k=1+1=2;
判斷k>10不成立,執(zhí)行S=1+ ,k=2+1=3;
判斷k>10不成立,執(zhí)行S=1+ + ,k=3+1=4;
判斷k>10不成立,執(zhí)行S=1+ + + ,k=4+1=5;
…
判斷i>10不成立,執(zhí)行S= ,k=10+1=11;
判斷i>10成立,輸出S= .
算法結(jié)束.
故選B.
【考點精析】利用程序框圖對題目進行判斷即可得到答案,需要熟知程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個袋中裝有1紅,2白和2黑共5個小球,這5個小球除顏色外其它都相同,現(xiàn)從袋中任取2個球,則至少取到1個白球的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四邊形,側(cè)棱AA1⊥底面ABCD,AB=1,AC= ,BC=BB1=2.
(Ⅰ)求證:AC⊥平面ABB1A1;
(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=xex﹣ax(a∈R,a為常數(shù)),e為自然對數(shù)的底數(shù). (Ⅰ)當(dāng)f(x)>0時,求實數(shù)x的取值范圍;
(Ⅱ)當(dāng)a=2時,求使得f(x)+k>0成立的最小正整數(shù)k.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠有4臺大型機器,在一個月中,一臺機器至多出現(xiàn)1次故障,且每臺機器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需1名維修工人進行維修,每臺機器出現(xiàn)故障需要維修的概率為 . (Ⅰ)若出現(xiàn)故障的機器臺數(shù)為x,求x的分布列;
(Ⅱ)該廠至少有多少名維修工人才能保證每臺機器在任何時刻同時出現(xiàn)故障時能及時進行維修的概率不少于90%?
(Ⅲ)已知一名維修工人每月只有維修1臺機器的能力,每月需支付給每位維修工人1萬元的工資,每臺機器不出現(xiàn)故障或出現(xiàn)故障能及時維修,就使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤,若該廠現(xiàn)有2名維修工人,求該廠每月獲利的均值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強很喜歡操作探究問題,他把一條邊長為8cm的線段AB放在直角坐標(biāo)系中,使點A在y軸的正半軸上,點B在x軸的正半軸上,點P為線段AB的中點.在平面直角坐標(biāo)系中進行操作探究:當(dāng)點B從點O出發(fā)沿x軸正方向移動,同時頂點A隨之從y正半軸上一點移動到點O為止.小強發(fā)現(xiàn)了兩個正確的結(jié)論:
(1)點P到原點的距離始終是一個常數(shù),則這個常數(shù)是_____cm;
(2)在B點移動的過程中,點P也隨之移動,則點P移動的總路徑長為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x+3|+|2x﹣1|. (Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠ACB=90°,AC=BC,AE 是 BC 邊的中線,過點C 作 CF⊥AE,垂足為點 F,過點 B 作 BD⊥BC 交 CF 的延長線于點 D.
(1)試證明:AE=CD;
(2)若 AC=12cm,求線段 BD 的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分別以點A,B為圓心,大于線段AB長度的一半為半徑作弧,相交于點E,F(xiàn),過點E,F(xiàn)作直線EF,交AB于點D,連接CD,則△ACD的周長為( )
A.13
B.17
C.18
D.25
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com