【題目】“早黑寶”葡萄品種是我省農(nóng)科院研制的優(yōu)質(zhì)新品種,在我省被廣泛種植,鄧州市某葡萄種植基地2017年種植“早黑寶”100畝,到2019年“卓黑寶”的種植面積達到196畝.
(1)求該基地這兩年“早黑寶”種植面積的平均增長率;
(2)市場調(diào)查發(fā)現(xiàn),當(dāng)“早黑寶”的售價為20元/千克時,每天能售出200千克,售價每降價1元,每天可多售出50千克,為了推廣宣傳,基地決定降價促銷,同時減少庫存,已知該基地“早黑寶”的平均成本價為12元/千克,若使銷售“早黑寶”每天獲利1750元,則售價應(yīng)降低多少元?
【答案】(1)該基地這兩年“早黑寶”種植面積的平均增長率為40%.(2)售價應(yīng)降低3元
【解析】
(1)設(shè)該基地這兩年“早黑寶”種植面積的平均增長率為x,根據(jù)題意列出關(guān)于x的一元二次方程,求解方程即可;(2)設(shè)售價應(yīng)降低y元,則每天售出(200+50y)千克,根據(jù)題意列出關(guān)于y的一元二次方程,求解方程即可.
(1)設(shè)該基地這兩年“早黑寶”種植面積的平均增長率為,根據(jù)題意得
解得,(不合題意,舍去)
答:該基地這兩年“早黑寶”種植面積的平均增長率為40%.
(2)設(shè)售價應(yīng)降低元,則每天可售出千克
根據(jù)題意,得
整理得,,解得,
∵要減少庫存
∴不合題意,舍去,∴
答:售價應(yīng)降低3元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OA1B1,△B1A2B2是等邊三角形,點A1,A2在函數(shù)的圖象上,點B1,B2在x軸的正半軸上,分別求△OA1B1,△B1A2B2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形.
(1)用直尺和圓規(guī)作出對角線AC的垂直平分線,分別交AD,BC于E,F;(保留作圖痕跡,不寫作法)
(2)在(1)作出的圖形中,連接CE,AF,若AB=4,BC=8,且AB⊥AC,求四邊形AECF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形中,,為中點,將繞點旋轉(zhuǎn)得到.一動點從出發(fā),以每秒1的速度沿的路線勻速運動,過點作直線,使.
(1)當(dāng)點運動2秒時,另一動點也從出發(fā)沿的路線運動,且在上以每秒1的速度勻速運動,在上以每秒2的速度勻速運動,過作直線使,設(shè)點的運動時間為秒,直線與截四邊形所得圖形的面積為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值.
(2)當(dāng)點開始運動的同時,另一動點從處出發(fā)沿的路線運動,且在上以每秒的速度勻速運動,在上以每秒2的速度勻度運動,是否存在這樣的,使為等腰三角形?若存在,直接寫出點運動的時間的值,若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級開展征文活動,征文主題只能從“愛國”“敬業(yè)”“誠信”“友善”四個主題中選擇一個,九年級每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機抽取了部分征文進行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
(1)求本次調(diào)查共抽取了多少名學(xué)生的征文;
(2)將上面的條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整;
(3)本次抽取的3份以“誠信”為主題的征文分別是小義、小玉和大力的,若從中隨機選取2份以“誠信”為主題的征文進行交流,請用畫樹狀圖法或列表法求小義和小玉同學(xué)的征文同時被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°.AC=8,BC=3,點D是BC邊上動點,連接AD交以CD為直徑的圓于點E,則線段BE長度的最小值為( )
A.1B.C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖中,,P是斜邊AC上一個動點,以即為直徑作交BC于點D,與AC的另一個交點E,連接DE.
(1)當(dāng)時,
①若,求的度數(shù);
②求證;
(2)當(dāng),時,
①是含存在點P,使得是等腰三角形,若存在求出所有符合條件的CP的長;
②以D為端點過P作射線DH,作點O關(guān)于DE的對稱點Q恰好落在內(nèi),則CP的取值范圍為________.(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點,拋物線交軸的負(fù)半軸于點,交軸的正半軸于點,交軸的正半軸于點,且.
(1)求點的坐標(biāo);
(2)如圖1,點在第一象限的拋物線上,其橫坐標(biāo)為,交軸于點,設(shè),若,求與之間的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;
(3)如圖2,在(2)的條件下,點在第四象限的拋物線上,其橫坐標(biāo)為,連接,交軸于點,連接并延長,交拋物線于點,連接,過點作,交線段于點,交軸于點,若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com