【題目】如圖,在四邊形ABCD中,ADBC,AD12cmBC8cm,P,Q分別從A,C同時出發(fā),P1cm/s的速度由AD運動,Q2cm/s的速度由C出發(fā)向B運動,_____秒后四邊形ABQP是平行四邊形.

【答案】.

【解析】

根據(jù)一組對邊平行且相等的四邊形是平行四邊形可得當APBQ時,四邊形ABQP是平行四邊形,因此設x秒后四邊形ABQP是平行四邊形,進而表示出APxcm,CQ2xcmQB=(82xcm再列方程解出x的值即可.

解:設x秒后,四邊形ABQP是平行四邊形,

P1cm/s的速度由AD運動,Q2cm/s的速度由C出發(fā)向B運動,

APxcm,CQ2xcm

BC8cm,

QB=(82xcm,

APBQ時,四邊形ABQP是平行四邊形,

x82x,

解得:x

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)計劃把一批貨物用一列火車運往某地已知這列火車可掛A,B兩種不同規(guī)格的貨車廂共40節(jié),使用A型車廂每節(jié)費用6000元,使用B型車廂每節(jié)費用為8000元.

設運送這批貨物的總費用為y元,這列火車掛A型車廂x節(jié),寫出y關于x的函數(shù)表達式,并求出自變量x的取值范圍;

已知A型車廂數(shù)不少于B型車廂數(shù),運輸總費用不低于276000元,問有哪些不同運送方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,EDFG交于點H,∠C=∠EFG,∠CED=∠GHD

1)求證:CEGF;

2)試判斷∠AED與∠D之間的數(shù)量關系,并說明理由;

3)若∠EHF80°,∠D30°,求∠AEM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)用不同的方法計算如圖中陰影部分的面積得到的等式: ;

2)如圖是兩個邊長分別為、、的直角三角形和一個兩條直角邊都是的直角三角形拼成,試用不同的方法計算這個圖形的面積,你能發(fā)現(xiàn)什么?說明理由;

3)根據(jù)上面兩個結論,解決下面問題:若如圖中,直角三邊a、、c,

①滿足,ab=18,求的值;

②在①的條件下,若點是邊上的動點,連接,求線段的最小值;

③若,,且,則的值是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,EDC邊上一個動點,FAB邊上一點,∠AEF=30°.設DE=x,圖中某條線段長為y,yx滿足的函數(shù)關系的圖象大致如圖所示,則這條線段可能是圖中的(  ).

A. 線段EC B. 線段AE C. 線段EF D. 線段BF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“一帶一路”讓中國和世界更緊密,“中歐鐵路”為了安全起見在某段鐵路兩旁安置了兩座可旋轉探照燈.如圖1所示,燈A射線從AM開始順時針旋轉至AN便立即回轉,燈B射線從BP開始順時針旋轉至BQ便立即回轉,兩燈不停交叉照射巡視.若燈A轉動的速度是每秒2度,燈B轉動的速度是每秒1度.假定主道路是平行的,即PQMN,且∠BAM:∠BAN=2:1.

(1)填空:∠BAN=_____°;

(2)若燈B射線先轉動30秒,燈A射線才開始轉動,在燈B射線到達BQ之前,A燈轉動幾秒,兩燈的光束互相平行?

(3)如圖2,若兩燈同時轉動,在燈A射線到達AN之前.若射出的光束交于點C,過C作ACD交PQ于點D,且ACD=120°,則在轉動過程中,請?zhí)骄?/span>BAC與BCD的數(shù)量關系是否發(fā)生變化?若不變,請求出其數(shù)量關系;若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習了正方形后,數(shù)學小組的同學對正方形進行了探究,發(fā)現(xiàn):

1)如圖1,在正方形ABCD中,點EBC邊上任意一點(點E不與B、C重合),點F在線段AE上,過點F的直線MNAE,分別交AB、CD于點M、N . 此時,有結論AE=MN,請進行證明;

2)如圖2:當點FAE中點時,其他條件不變,連接正方形的對角線BD, MN BD交于點G,連接BF,此時有結論:BF= FG,請利用圖2做出證明.

3)如圖3:當點E為直線BC上的動點時,如果(2)中的其他條件不變,直線MN分別交直線AB、CD于點MN,請你直接寫出線段AEMN之間的數(shù)量關系、線段BFFG之間的數(shù)量關系.

1 2 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一副直角三角板按如圖所示放置,點EF分別在線段AB和線段AC上,∠DEF=BAC=90°,∠D=45°,∠C=30°.

(1)若∠DEA=28°,求∠DFA的度數(shù).

(2)當∠DFC等于多少度時,EFBC?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠為了擴大生產(chǎn),決定購買6臺機器用于生產(chǎn)零件,現(xiàn)有甲、乙兩種機器可供選擇.其中甲型機器每日生產(chǎn)零件106個,乙型機器每日生產(chǎn)零件60個,經(jīng)調査,購買3臺甲型機器和2臺乙型機器共需要31萬元,購買一臺甲型機器比購買一臺乙型機器多2萬元.

1)求甲、乙兩種機器每臺各多少萬元?

2)如果工廠購買機器的預算資金不超過34萬元,那么你認為該工廠有哪幾種購買方案?

3)在(2)的條件下,如果要求該工廠購進的6臺機器的日產(chǎn)量能力不能低于400個,那么為了節(jié)約資金.應該選擇哪種方案?

查看答案和解析>>

同步練習冊答案