【題目】直線y=2x+1經(jīng)過點(0,a),則a=________

【答案】1 

【解析】試題分析:根據(jù)一次函數(shù)圖象上的點的坐標特征,將點(0a)代入直線方程,然后解關于a的方程即可.

解:直線y=2x+1經(jīng)過點(0,a),

∴a=2×0+1,

∴a=1

故答案為:1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】人體中紅細胞的直徑約為0.000 007 7 m,這個數(shù)用科學記數(shù)法表示為( )

A. 77×10-7B. 7.7×10-7C. 0.77×10-5D. 7.7×10-6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為50和39,則△EDF的面積為(
A.11
B.5.5
C.7
D.3.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)(2.5×104)×(1.6×103);

(2)(3×102)3×(-103)4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,D為AC邊上的中點,過D點作DE⊥DF,交AB于E,交BC為F,
(1)求證:BE=CF;
(2)若AE=4,F(xiàn)C=3,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊥CD,CD⊥BD,∠A=∠FEC.以下是小貝同學證明CD∥EF的推理過程或理由,請你在橫線上補充完整其推理過程或理由.
證明:∵AB⊥CD,CD⊥BD(已知)
∴∠ABD=∠CDB=90°()∴∠ABD+∠CDB=180°.
∴AB∥()(
∵∠A=∠FEC(已知)
∴AB∥()(
∴CD∥EF(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC,∠BAC=100°,點D在BC邊上,△ABD和△AFD關于直線AD對稱,∠FAC的平分線交BC于點G,連接FG.
(1)求∠DFG的度數(shù);
(2)設∠BAD=θ, ①當θ為何值時,△DFG為等腰三角形;
②△DFG有可能是直角三角形嗎?若有,請求出相應的θ值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,從點P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴展下去,則P2017的坐標為( )

A.(504,﹣504)
B.(﹣504,504)
C.(﹣504,503)
D.(﹣505,504)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:

6x2-(2x-1)(3x-2)+(x+2)(x-2),其中x=2.

查看答案和解析>>

同步練習冊答案