6、如圖,直線a與直線b互相平行,直線l與直線a、b相交,則∠α的度數(shù)是( 。
分析:
首先由直線a與直線b互相平行,可得∠1=∠2=40°(兩直線平行,同位角相等),再由鄰補角的性質(zhì),可得∠α的度數(shù).
解答:
解:∵a∥b,
∴∠1=∠2=40°,
∵∠1+∠α=180°,
∴∠α=180°-∠1=180°-40°=140°.
故選C.
點評:此題考查了平行線的性質(zhì).此題比較簡單,注意仔細作圖求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•盤錦)如圖,直線y=
m3
x+m(m≠0)交x軸負半軸于點A、交y軸正半軸于點B且AB=5,過點A作直線AC⊥AB交y軸于點C.點E從坐標原點O出發(fā),以0.8個單位/秒的速度沿y軸向上運動;與此同時直線l從與直線AC重合的位置出發(fā),以1個單位/秒的速度沿射線AB方向平行移動.直線l在平移過程中交射線AB于點F、交y軸于點G.設(shè)點E離開坐標原點O的時間為t(t≥0)s.
(1)求直線AC的解析式;
(2)直線l在平移過程中,請直接寫出△BOF為等腰三角形時點F的坐標;
(3)直線l在平移過程中,設(shè)點E到直線l的距離為d,求d與t的函數(shù)關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線y=數(shù)學(xué)公式x+m(m≠0)交x軸負半軸于點A、交y軸正半軸于點B且AB=5,過點A作直線AC⊥AB交y軸于點C.點E從坐標原點O出發(fā),以0.8個單位/秒的速度沿y軸向上運動;與此同時直線l從與直線AC重合的位置出發(fā),以1個單位/秒的速度沿射線AB方向平行移動.直線l在平移過程中交射線AB于點F、交y軸于點G.設(shè)點E離開坐標原點O的時間為t(t≥0)s.
(1)求直線AC的解析式;
(2)直線l在平移過程中,請直接寫出△BOF為等腰三角形時點F的坐標;
(3)直線l在平移過程中,設(shè)點E到直線l的距離為d,求d與t的函數(shù)關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似的判定解答題(帶解析) 題型:解答題

如圖,直線y=x+m(m≠0)交x軸負半軸于點A、交y軸正半軸于點B且AB=5,過點A作直線AC⊥AB交y軸于點C.點E從坐標原點O出發(fā),以0.8個單位/秒的速度沿y軸向上運動;與此同時直線l從與直線AC重合的位置出發(fā),以1個單位/秒的速度沿射線AB方向平行移動.直線l在平移過程中交射線AB于點F、交y軸于點G.設(shè)點E離開坐標原點O的時間為t(t≥0)s.
(1)求直線AC的解析式;
(2)直線l在平移過程中,請直接寫出△BOF為等腰三角形時點F的坐標;
(3)直線l在平移過程中,設(shè)點E到直線l的距離為d,求d與t的函數(shù)關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年遼寧省盤錦市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,直線y=x+m(m≠0)交x軸負半軸于點A、交y軸正半軸于點B且AB=5,過點A作直線AC⊥AB交y軸于點C.點E從坐標原點O出發(fā),以0.8個單位/秒的速度沿y軸向上運動;與此同時直線l從與直線AC重合的位置出發(fā),以1個單位/秒的速度沿射線AB方向平行移動.直線l在平移過程中交射線AB于點F、交y軸于點G.設(shè)點E離開坐標原點O的時間為t(t≥0)s.
(1)求直線AC的解析式;
(2)直線l在平移過程中,請直接寫出△BOF為等腰三角形時點F的坐標;
(3)直線l在平移過程中,設(shè)點E到直線l的距離為d,求d與t的函數(shù)關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似的判定解答題(解析版) 題型:解答題

如圖,直線y=x+m(m≠0)交x軸負半軸于點A、交y軸正半軸于點B且AB=5,過點A作直線AC⊥AB交y軸于點C.點E從坐標原點O出發(fā),以0.8個單位/秒的速度沿y軸向上運動;與此同時直線l從與直線AC重合的位置出發(fā),以1個單位/秒的速度沿射線AB方向平行移動.直線l在平移過程中交射線AB于點F、交y軸于點G.設(shè)點E離開坐標原點O的時間為t(t≥0)s.

(1)求直線AC的解析式;

(2)直線l在平移過程中,請直接寫出△BOF為等腰三角形時點F的坐標;

(3)直線l在平移過程中,設(shè)點E到直線l的距離為d,求d與t的函數(shù)關(guān)系.

 

查看答案和解析>>

同步練習(xí)冊答案