【題目】如圖,圓錐的軸截面是邊長為6cm的正三角形ABC,P是母線AC的中點.則在圓錐的側面上從B點到P點的最短路線的長為_____

【答案】3

【解析】

求出圓錐底面圓的周長,則以AB為一邊,將圓錐展開,就得到一個以A為圓心,以AB為半徑的扇形,根據(jù)弧長公式求出展開后扇形的圓心角,求出展開后∠BAC=90°,連接BP,根據(jù)勾股定理求出BP即可.

解:圓錐底面是以BC為直徑的圓,圓的周長是BCπ6π,

AB為一邊,將圓錐展開,就得到一個以A為圓心,以AB為半徑的扇形,弧長是l6π

設展開后的圓心角是n°,則

解得:n180,

即展開后∠BAC×180°=90°,

APAC3AB6,

則在圓錐的側面上從B點到P點的最短路線的長就是展開后線段BP的長,

由勾股定理得:BP,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】中華文化,源遠流長,在文學方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”,某中學為了了解學生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題做法全校學生中進行了抽樣調查,根據(jù)調查結果繪制城如圖所示的兩個不完整的統(tǒng)計圖,請結合圖中信息解決下列問題:

(1)本次調查所得數(shù)據(jù)的眾數(shù)是 部,中位數(shù)是 部,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為 度.

(2)請將條形統(tǒng)計圖補充完整;

(3)沒有讀過四大古典名著的兩名學生準備從四大固定名著中各自隨機選擇一部來閱讀,則他們選中同一名著的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD中,E是邊CD的中點,將沿AE對折至,延長交BC于點G,連接BG的長(

A.1B.2C.D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高學生的閱讀能力,我市某校開展了“讀好書,助成長”的活動,并計劃購置一批圖書,購書前,對學生喜歡閱讀的圖書類型進行了抽樣調查,并將調查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計圖,如圖所示,請根據(jù)統(tǒng)計圖回答下列問題:

1)本次調查共抽取了 名學生,兩幅統(tǒng)計圖中的m ,n

2)已知該校共有3600名學生,請你估計該校喜歡閱讀“A”類圖書的學生約有多少人?

3)學校將舉辦讀書知識競賽,九年級1班要在本班3名優(yōu)勝者(21女)中隨機選送2人參賽,請用列表或畫樹狀圖的方法求被選送的兩名參賽者為一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB⊙O的直徑,DM⊙O于點D,過點AAE⊥DM,垂足為E,交⊙O于點C,連接AD

1)求證:AD∠BAC的平分線;

2)連接CD,若,半徑為5,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某縣美化城市工程招投標中,有甲、乙兩個工程隊投標經(jīng)測算:甲隊單獨完成這項工程需要30天,若由甲隊先做10天,剩下的工程由甲、乙合作12天可完成.問:

1)乙隊單獨完成這項工程需要多少天?

2)甲隊施工一天需付工程款35萬元,乙隊施工一天需工程款2萬元,該工程計劃用時不超過35天,在不超過計劃天數(shù)的前提下,由甲隊先單獨施工若干天,剩下的工程由乙隊單獨完成,那么安排甲隊單獨施工多少天工程款最。孔钍〉墓こ炭钍嵌嗌偃f元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABO的直徑,DAO的切線,切點為A,過O上的點CCDABAD于點D,連接BCAC

1)如圖,若DCO的切線,切點為C,求∠ACD和∠DAC的大。

2)如圖,當CDO的割線且與O交于點E時,連接AE,若∠EAD30°,求∠ACD和∠DAC的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標為(m,0),m0,點B與點A 關于原點對稱,直線與雙曲線交于C,D兩點.

(1)直接判斷后填空:四邊形ACBD的形狀一定是 ;

(2)若點D(1,t),求雙曲線的解析式;

(3)(2)的前提下,四邊形ACBD為矩形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C是以AB為直徑的半圓O上一點,連結ACBC,分別以AC、BC為直徑作半圓,其中M,N分別是AC、BC為直徑作半圓弧的中點,,的中點分別是P,Q.若MP+NQ7,AC+BC26,則AB的長是( 。

A.17B.18C.19D.20

查看答案和解析>>

同步練習冊答案