分析 (1)由“等鄰邊四邊形”的定義易得出結(jié)論;
(2)①先利用平行四邊形的判定定理得平行四邊形,再利用“等鄰邊四邊形”定義得鄰邊相等,得出結(jié)論;
②由平移的性質(zhì)易得BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=$\sqrt{5}$,再利用“等鄰邊四邊形”定義分類討論,由勾股定理得出結(jié)論;
(3)由旋轉(zhuǎn)的性質(zhì)可得△ABF≌△ADC,由全等性質(zhì)得∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,F(xiàn)B=CD,利用相似三角形判定得△ACF∽△ABD,由相似的性質(zhì)和四邊形內(nèi)角和得∠CBF=90°,利用勾股定理,等量代換得出結(jié)論.
解答 解:(1)AB=BC或BC=CD或CD=AD或AD=AB(任寫(xiě)一個(gè)即可);
(2)①正確,理由為:
∵四邊形的對(duì)角線互相平分,
∴這個(gè)四邊形是平行四邊形,
∵四邊形是“等鄰邊四邊形”,
∴這個(gè)四邊形有一組鄰邊相等,
∴這個(gè)“等鄰邊四邊形”是菱形;
②∵∠ABC=90°,AB=2,BC=1,
∴AC=$\sqrt{5}$,
∵將Rt△ABC平移得到△A′B′C′,
∴BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=$\sqrt{5}$,
(I)如圖1,當(dāng)AA′=AB時(shí),BB′=AA′=AB=2;
(II)如圖2,當(dāng)AA′=A′C′時(shí),BB′=AA′=A′C′=$\sqrt{5}$;
(III)當(dāng)A′C′=BC′=$\sqrt{5}$時(shí),
如圖3,延長(zhǎng)C′B′交AB于點(diǎn)D,則C′B′⊥AB,
∵BB′平分∠ABC,
∴∠ABB′=$\frac{1}{2}$∠ABC=45°,
∴∠BB′D=′∠ABB′=45°
∴B′D=B,
設(shè)B′D=BD=x,
則C′D=x+1,BB′=$\sqrt{2}$x,
∵在Rt△BC′D中,BD2+(C′D)2=(BC′)2
∴x2+(x+1)2=($\sqrt{5}$)2,
解得:x1=1,x2=-2(不合題意,舍去),
∴BB′=$\sqrt{2}$x=$\sqrt{2}$
(Ⅳ)當(dāng)BC′=AB=2時(shí),
如圖4,與(Ⅲ)方法一同理可得:BD2+(C′D)2=(BC′)2,
設(shè)B′D=BD=x,
則x2+(x+1)2=22,
解得:x1=$\frac{-1+\sqrt{7}}{2}$,x2=$\frac{-1-\sqrt{7}}{2}$(不合題意,舍去),
∴BB′=$\sqrt{2}$x=$\frac{\sqrt{14}-\sqrt{2}}{2}$;
(3)BC,CD,BD的數(shù)量關(guān)系為:BC2+CD2=2BD2,
如圖5,
∵AB=AD,
∴將△ADC繞點(diǎn)A旋轉(zhuǎn)到△ABF,連接CF,
∴△ABF≌△ADC,
∴∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,F(xiàn)B=CD,
∴∠BAD=∠CAF,$\frac{AC}{AF}$=$\frac{AD}{AB}$=1,
∴△ACF∽△ABD,
∴$\frac{CF}{BD}$=$\frac{AC}{AB}$=$\frac{\sqrt{2}}{2}$,
∴CF=$\sqrt{2}$BD,
∵∠BAD+∠ADC+∠BCD+∠ABC=360°,
∴∠ABC+∠ADC-360°-(∠BAD+∠BCD)=360°-90°=270°,
∴∠ABC+∠ABF=270°,
∴∠CBF=90°,
∴BC2+FB2=CF2=($\sqrt{2}$BD)2=2BD2,
∴BC2+CD2=2BD2.
點(diǎn)評(píng) 此題屬于四邊形的綜合題.屬于新定義題目,考查了菱形的判定,勾股定理,相似三角形的性質(zhì)等知識(shí).注意理解新定義,分類討論是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a2•a3=a6 | B. | a3÷a=a3 | C. | (a2)3=a6 | D. | (3a3)3=9a9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com