【題目】如圖,AC、BD相交于點(diǎn)O,∠A=∠ABC,∠DBC=∠D,BD平分∠ABC,點(diǎn)E在BC的延長(zhǎng)線上。

(1)求證:CD∥AB;

(2)若∠D=38°,求∠ACE的度數(shù).

【答案】(1)詳見(jiàn)解析

(2)152°

【解析】

1)BD平分∠ABC,可得∠ABD=DBC,再根據(jù)∠DBC=D,利用等量代換可得∠ABD=D,即可證得CDAB;

(2)由已知可得∠ABD=D=38°,再根據(jù)角平分線的定義可得∠ABC=2ABD=76°,繼而可得∠ABC=A=76°,再由(1)CDAB,利用平行線的性質(zhì)可得∠ACD=A=76°, ABC=DCE=76°,根據(jù)∠ACE=ACD+DCE代入進(jìn)行計(jì)算即可得.

(1)BD平分∠ABC,

∴∠ABD=DBC,

∵∠DBC=D,

∴∠ABD=D,

CDAB;

(2)∵∠D=38°,

∴∠ABD=D=38°,

BD平分∠ABC

∴∠ABC=2ABD=76°,

∴∠ABC=A=76°,

CDAB

∴∠ACD=A=76°, ABC=DCE=76°,

∴∠ACE=ACD+DCE=76°+76°=152°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將斜邊長(zhǎng)為4,∠A為30°角的Rt△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120°得到△A′C′B,弧 、 是旋轉(zhuǎn)過(guò)程中A、C的運(yùn)動(dòng)軌跡,則圖中陰影部分的面積為( )

A.4π+2
B.
π﹣2
C.
π+2
D.4π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把正方體的六個(gè)面分別涂上六種不同顏色,并畫(huà)上朵數(shù)不等的花,各面上的顏色與花的朵數(shù)情況見(jiàn)下表:

現(xiàn)將上述大小相同,顏色、花朵分布也完全相同的四個(gè)正方體拼成一個(gè)水平放置的長(zhǎng)方體,如圖所示.問(wèn)長(zhǎng)方體的下底面共有多少朵花?

顏色

藍(lán)

花的朵數(shù)

1

2

3

4

5

6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)面積為1的正方形,經(jīng)過(guò)一次生長(zhǎng)后,在他的左右肩上生出兩個(gè)小正方形,其中,三個(gè)正方形圍成的三角形是直角三角形,再經(jīng)過(guò)一次生長(zhǎng)后,變成了該圖,如果繼續(xù)生長(zhǎng)下去,它將變得枝繁葉茂,請(qǐng)你算出生長(zhǎng)2016次后形成的圖形中所有的正方形的面積和是( )

A. 1 B. 2015 C. 201 D. 2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過(guò)點(diǎn)C作CF平行于BA交PQ于點(diǎn)F,連接AF.

(1)求證:△AED≌△CFD;

(2)求證:四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, ,, 是由 繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)得到的,連接、相交于點(diǎn).

(1)求證: ;

(2)當(dāng)四邊形為菱形時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在ABC中,∠BAC=90°,ABC=45°,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合).以AD為邊作正方形ADEF,連接CF.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí).求證:CF+CD=BC;

(2)如圖2,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)直接寫(xiě)出CF,BC,CD三條線段之間的關(guān)系;

(3)如圖3,當(dāng)點(diǎn)D在線段BC的反向延長(zhǎng)線上時(shí),且點(diǎn)A,F(xiàn)分別在直線BC的兩側(cè),其他條件不變;

①請(qǐng)直接寫(xiě)出CF,BC,CD三條線段之間的關(guān)系;

②若正方形ADEF的邊長(zhǎng)為2,對(duì)角線AE,DF相交于點(diǎn)O,連接OC.求OC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知折痕AE=5 cm,且tan∠EFC= ,則矩形ABCD的周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的數(shù)學(xué)問(wèn)題:“今有鳧(鳧:野鴨)起南海,七日至北海;雁起北海,九日至南海.今鳧雁俱起,問(wèn)何日相逢?”意思是:野鴨從南海起飛,7天飛到北海;大雁從北海起飛,9天飛到南海.野鴨與大雁從南海和北海同時(shí)起飛,經(jīng)過(guò)幾天相遇.設(shè)野鴨與大雁從南海和北海同時(shí)起飛,經(jīng)過(guò)x天相遇,根據(jù)題意,下面所列方程正確的是( )
A.(9﹣7)x=1
B.(9+7)x=1
C.( + )x=1
D.( )x=1

查看答案和解析>>

同步練習(xí)冊(cè)答案