(2007•朝陽區(qū))已知:如圖,BD為⊙O的直徑,BC為弦,A為BC弧中點,AF∥BC交DB的延長線于點F,AD交BC于點E,AE=2,ED=4.
(1)求證:AF是⊙O的切線;
(2)求AB的長.

【答案】分析:(1)連接AO,證明AO⊥AF由切線的判定定理可以得出AF是⊙O的切線.
(2)先根據(jù)相似三角形的判定得到△ABE∽△ADB,從而根據(jù)相似三角形的對應(yīng)邊成比例即可得到AD的長.
解答:(1)證明:連接OA,
∵A是BC弧的中點,
∴OA⊥BC.
∵AF∥BC,
∴OA⊥AF.
∴AF是⊙O的切線.

(2)解:∵∠BAE=DAB,∠ABE=∠ADB,
∴△ABE∽△ADB.
=
∴AB2=AE•AD=12.
∴AB=2
點評:此題主要考查切線的判定,平行線的性質(zhì)及圓周角定理等知識點的綜合運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《函數(shù)基礎(chǔ)知識》(02)(解析版) 題型:選擇題

(2007•朝陽區(qū))如圖,直角梯形ABCD中,∠A=90°,∠B=45°,底邊AB=5,高AD=3,點E由B沿折線BCD向點D移動,EM⊥AB于M,EN⊥AD于N,設(shè)BM=x,矩形AMEN的面積為y,那么y與x之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(01)(解析版) 題型:選擇題

(2007•朝陽區(qū))如圖,直角梯形ABCD中,∠A=90°,∠B=45°,底邊AB=5,高AD=3,點E由B沿折線BCD向點D移動,EM⊥AB于M,EN⊥AD于N,設(shè)BM=x,矩形AMEN的面積為y,那么y與x之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《函數(shù)基礎(chǔ)知識》(02)(解析版) 題型:選擇題

(2007•朝陽區(qū))如圖,直角梯形ABCD中,∠A=90°,∠B=45°,底邊AB=5,高AD=3,點E由B沿折線BCD向點D移動,EM⊥AB于M,EN⊥AD于N,設(shè)BM=x,矩形AMEN的面積為y,那么y與x之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年北京市朝陽區(qū)中考數(shù)學試卷(解析版) 題型:解答題

(2007•朝陽區(qū))已知:如圖,點A、B分別在x軸、y軸上,以O(shè)A為直徑的⊙P交AB于點C,E為直徑OA上一動點(與點O、A不重合).EF⊥AB于點F,交y軸于點G.設(shè)點E的橫坐標為x,△BGF的面積為y.
(1)求直線AB的解析式;
(2)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年北京市朝陽區(qū)中考數(shù)學試卷(解析版) 題型:選擇題

(2007•朝陽區(qū))如圖,直角梯形ABCD中,∠A=90°,∠B=45°,底邊AB=5,高AD=3,點E由B沿折線BCD向點D移動,EM⊥AB于M,EN⊥AD于N,設(shè)BM=x,矩形AMEN的面積為y,那么y與x之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案