已知:如圖,拋物線y=ax2+bx+2與x軸的交點是A(3,0)、B(6,0),與y軸的交點是C.
(1)求拋物線的函數(shù)表達式;
(2)設(shè)P(x,y)(0<x<6)是拋物線上的動點,過點P作PQ∥y軸交直線BC于點Q.
①當(dāng)x取何值時,線段PQ的長度取得最大值,其最大值是多少?
②是否存在這樣的點P,使△OAQ為直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

【答案】分析:(1)已知了A,B的坐標(biāo),可用待定系數(shù)法求出函數(shù)的解析式.
(2)①Q(mào)P其實就是一次函數(shù)與二次函數(shù)的差,二次函數(shù)的解析式在(1)中已經(jīng)求出,而一次函數(shù)可根據(jù)B,C的坐標(biāo),用待定系數(shù)法求出.那么讓一次函數(shù)的解析式減去二次函數(shù)的解析式,得出的新的函數(shù)就是關(guān)于PQ,x的函數(shù)關(guān)系式,那么可根據(jù)函數(shù)的性質(zhì)求出PQ的最大值以及相對應(yīng)的x的取值.
(3)分三種情況進行討論:
當(dāng)∠QOA=90°時,Q與C重合,顯然不合題意.因此這種情況不成立;
當(dāng)∠OAQ=90°時,P與A重合,因此P的坐標(biāo)就是A的坐標(biāo);
當(dāng)∠OQA=90°時,如果設(shè)QP與x軸的交點為D,那么根據(jù)射影定理可得出DQ2=OD•DA.由此可得出關(guān)于x的方程即可求出x的值,然后將x代入二次函數(shù)式中即可得出P的坐標(biāo).
解答:解:(1)∵拋物線過A(3,0),B(6,0),
,
解得:
∴所求拋物線的函數(shù)表達式是y=x2-x+2.

(2)①∵當(dāng)x=0時,y=2,
∴點C的坐標(biāo)為(0,2).
設(shè)直線BC的函數(shù)表達式是y=kx+b.
則有,
解得:
∴直線BC的函數(shù)表達式是y=-x+2.
∵0<x<6,點P、Q的橫坐標(biāo)相同,
∴PQ=yQ-yP=(-x+2)-(x2-x+2)
=-x2+x
=-(x-3)2+1
∴當(dāng)x=3時,線段PQ的長度取得最大值.最大值是1.

②解:當(dāng)∠OAQ=90°時,點P與點A重合,
∴P(3,0)
當(dāng)∠QOA=90°時,點P與點C重合,
∴x=0(不合題意)
當(dāng)∠OQA=90°時,
設(shè)PQ與x軸交于點D.
∵∠ODQ+∠ADQ=90°,∠QAD+∠AQD=90°,
∴∠OQD=∠QAD.
又∵∠ODQ=∠QDA=90°,
∴△ODQ∽△QDA.
,即DQ2=OD•DA.
∴(-x+2)2=x(3-x),
10x2-39x+36=0,
∴x1=,x2=,
∴y1=×(2-+2=;
y2=×(2-+2=;
∴P(,)或P().
∴所求的點P的坐標(biāo)是P(3,0)或P()或P(,).
點評:本題主要考查了二次函數(shù)的綜合應(yīng)用,用數(shù)形結(jié)合的思想來求解是解題的基本思路.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點,它們的橫坐標(biāo)分別為-1和3,精英家教網(wǎng)與y軸交點C的縱坐標(biāo)為3,△ABC的外接圓的圓心為點M.
(1)求這條拋物線的解析式;
(2)求圖象經(jīng)過M、A兩點的一次函數(shù)解析式;
(3)在(1)中的拋物線上是否存在點P,使過P、M兩點的直線與△ABC的兩邊AB、BC的交點E、F和點B所組成的△BEF和△ABC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點的一個動圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標(biāo);
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標(biāo)及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧化縣質(zhì)檢)已知:如圖,拋物線y=ax2+bx+c與x軸交于點A(1-
3
,0)和點B,將拋物線沿x軸向上翻折,頂點P落在點P′(1,3)處.
(1)求原拋物線的解析式;
(2)在原拋物線上,是否存在一點,與它關(guān)于原點對稱的點也在該拋物線上?若存在,求滿足條件的點的坐標(biāo);若不存在,說明理由.
(3)學(xué)校舉行班徽設(shè)計比賽,九年級(5)班的小明在解答此題時頓生靈感:過點P′作x軸的平行線交拋物線于C、D兩點,將翻折后得到的新圖象在直線CD以上的部分去掉,設(shè)計成一個“W”型的班徽,“5”的拼音開頭字母為W,“W”圖案似大鵬展翅,寓意深遠;而且小明通過計算驚奇的發(fā)現(xiàn)這個“W”圖案的高與寬(CD)的比非常接近黃金分割比
5
-1
2
(約等于0.618).請你計算這個“W”圖案的高與寬的比到底是多少?(參考數(shù)據(jù):
5
≈2.236
,
6
≈2.449
,結(jié)果精確到0.001)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A,B,點A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)若點M在拋物線上,且△ABC與△ABM的面積相等,直接寫出點M的坐標(biāo);
(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標(biāo);
(4)若平行于x軸的動直線l與線段AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出直線l的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,拋物線y=x2+px+q與x軸相交于A、B兩點,與y軸交于點C,且OA≠OB,OA=OC,設(shè)拋物線的頂點為點P,直線PC與x軸的交點D恰好與點A關(guān)于y軸對稱.
(1)求p、q的值.
(2)在題中的拋物線上是否存在這樣的點Q,使得四邊形PAQD恰好為平行四邊形?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
(3)連接PA、AC.問:在直線PC上,是否存在這樣點E(不與點C重合),使得以P、A、E為頂點的三角形與△PAC相似?若存在,求出點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案