如圖,點A的坐標為(-1,0),點B在直線y=2x-4上運動,當線段AB最

短時,點B的坐標是        。

 

【答案】

)。

【解析】如圖,由題意,根據垂直線段最短的性質,當線段AB最短時點B的位置B1,有AB1⊥BD。

過點B1作B1E垂直x軸于點E。

由點C、D在直線y=2x-4可得,C(2,0),D(0,-4)

        設點B1(x ,2x-4),則E(x ,0)。

由A(-1,0),得AE= x+1,EB1=∣2x-4∣=4-2x,CO=2,DO=4。

易得△AB1E∽△DCO,∴,即。

解得!郆1)。

∴當線段AB最短時,點B的坐標是()。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•桂平市三模)如圖,點P的坐標為(2,
3
2
),過點P作x軸的平行線交y軸于點A,交反比例函數(shù)y=
k
x
(x>0)的圖象于點N;作PM⊥AN交反比例函數(shù)y=
k
x
(x>0)的圖象于點M,PN=4.
(1)求反比例函數(shù)和直線AM的解析式;
(2)求△APM的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:在直角坐標系中,點C的坐標為(0,-2),點A與點B在x軸上,且點A與點B的橫坐標是方程x2-3x-4=0的兩個根,點A在點B的左側.
(1)求經過A、B、C三點的拋物線的關系式.
(2)如圖,點D的坐標為(2,0),點P(m,n)是該拋物線上的一個動點(其中m>0,n<0),連接DP交BC于點E.
①當△BDE是等腰三角形時,直接寫出此時點E的坐標.
②連接CD、CP,△CDP是否有最大面積?若有,求出△CDP的最大面積和此時點P的坐標;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點A的坐標為(-1,0),點B在直線y=x上運動,當線段AB最短時,點B的坐標為
(-
1
2
,-
1
2
(-
1
2
,-
1
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點A的坐標為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,點A的坐標為(-1,2),點B的坐標為(2,1),有一點C在x軸上移動,則點C到A、B兩點的距離之和的最小值為( 。
A、3
2
B、4
C、3
D、4
2

查看答案和解析>>

同步練習冊答案