在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c經(jīng)過A(2,0)、B(4,0)兩點(diǎn),直線交y軸于點(diǎn)C,且過點(diǎn)D(8,m).
(1)求拋物線的解析式;
(2)在x軸上找一點(diǎn)P,使CP+DP的值最小,求出點(diǎn)P的坐標(biāo);
(3)將拋物線y=x2+bx+c左右平移,記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,當(dāng)四邊形A′B′DC的周長最小時(shí),求拋物線的解析式及此時(shí)四邊形A′B′DC周長的最小值.

【答案】分析:(1)將A、B點(diǎn)的坐標(biāo)代入拋物線的解析式中即可求出待定系數(shù)的值;
(2)根據(jù)已知直線的解析式可求出C點(diǎn)的坐標(biāo),作C關(guān)于x軸的對(duì)稱點(diǎn)C′,連接C′D,與x軸的交點(diǎn)即為所求的P點(diǎn),可先求出直線C′D的解析式,進(jìn)而求出P點(diǎn)的坐標(biāo);
(3)由于A′B′、CD都是定長,若四邊形A′B′DC的周長最小,那么A′C+B′D就最短,此時(shí)C′A′應(yīng)該平行于B′D,很顯然拋物線應(yīng)該向左平移,可將D向左平移2個(gè)單位(即AB的長)得到D′,那么C′D′與x軸的交點(diǎn)即為所求的A′,可先求出直線C′D′的解析式,然后再求得A′的坐標(biāo),也就能得到B′的坐標(biāo),用待定系數(shù)法即可求得平移后拋物線的解析式;此時(shí)四邊形A′B′DC的最小周長為:C′D′+AB+CD.
解答:解:(1)由于拋物線經(jīng)過A(2,0),B(4,0),則有:
y=(x-2)(x-4)=x2-6x+8;

(2)易知:C(0,2),D(8,6);
作C關(guān)于x軸的對(duì)稱點(diǎn)C′(0,-2),連接C′D,點(diǎn)P即為直線C′D與x軸的交點(diǎn);
設(shè)直線C′D的解析式為:y=kx-2,則有:
8k-2=6,k=1;
∴直線C′D的解析式為y=x-2;則P點(diǎn)坐標(biāo)為:P(2,0);

(3)當(dāng)拋物線向右平移時(shí),A′C+B′D>AC+BD,顯然不存在符合條件的拋物線;
當(dāng)拋物線向左平移時(shí),設(shè)平移后A′(x,0),B′(x+2,0);
若平移后四邊形A′B′DC的周長最小,那么A′C+B′D就應(yīng)該最;
將D向左平移2個(gè)單位,得:D′(6,6);
若四邊形A′B′DC的周長最小,那么C′、A′、D′就應(yīng)該在同一直線上,
設(shè)直線C′D′的解析式為:y=k′x-2,則有:6k′-2=6,k′=
∴直線C′D′的解析式為y=x-2,
則A′(,0),B′(,0);
∴此時(shí)拋物線的解析式為:y=(x-)(x-)=x2-5x+;
此時(shí)四邊形A′B′DC的周長為:A′B′+A′C+B′D+CD=AB+CD+C′D′=2+4+10=12+4
點(diǎn)評(píng):此題主要考查了一次函數(shù)與二次函數(shù)解析式的確定、函數(shù)圖象交點(diǎn)坐標(biāo)的求法等知識(shí);能夠確定四邊形A′B′DC的周長最小時(shí)A′的具體位置是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,-2),在y軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的有
4
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對(duì)稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C 點(diǎn),D是線段BC上一點(diǎn)(不與點(diǎn)B、C重合),若以B、O、D為頂點(diǎn)的三角形與△BAC相似,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P在y軸上,點(diǎn)M在此拋物線上,若要使以點(diǎn)P、M、A、B為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)你直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點(diǎn).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)B的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動(dòng)過程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長;
(3)在拋物線上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為7
2
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點(diǎn)P,使△AOP與△AOB相似,則符合條件的點(diǎn)P共有
5
5
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點(diǎn)D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案