【題目】已知拋物線y1=﹣x2+mx+n,直線y2=kx+b,y1的對(duì)稱軸與y2交于點(diǎn)A(﹣1,5),點(diǎn)A與y1的頂點(diǎn)B的距離是4.
(1)求y1的解析式;
(2)若y2隨著x的增大而增大,且y1與y2都經(jīng)過x軸上的同一點(diǎn),求y2的解析式.

【答案】
(1)解:∵拋物線y1=﹣x2+mx+n,直線y2=kx+b,y1的對(duì)稱軸與y2交于點(diǎn)A(﹣1,5),點(diǎn)A與y1的頂點(diǎn)B的距離是4.

∴B(﹣1,1)或(﹣1,9),

∴﹣ =﹣1, =1或9,

解得m=﹣2,n=0或8,

∴y1的解析式為y1=﹣x2﹣2x或y1=﹣x2﹣2x+8;


(2)解:當(dāng)y1的解析式為y1=﹣x2﹣2x時(shí),拋物線與x軸得交點(diǎn)為頂點(diǎn)(﹣1,0),不合題意;

當(dāng)y1=﹣x2+2x+8時(shí),解﹣x2+2x+8=0得x=﹣4或2,

∵y2隨著x的增大而增大,且過點(diǎn)A(﹣1,5),

∴y1與y2都經(jīng)過x軸上的同一點(diǎn)(﹣4,0),

把(﹣1,5),(﹣4,0)代入得

解得 ;

∴y2= x+


【解析】(1)根據(jù)題意求得頂點(diǎn)B得坐標(biāo),然后根據(jù)頂點(diǎn)公式即可求得m、n,從而求得y1的解析式;(2)分兩種情況討論:當(dāng)y1的解析式為y1=﹣x2﹣2x時(shí),拋物線與x軸得交點(diǎn)為頂點(diǎn)(﹣1,0),不合題意;當(dāng)y1=﹣x2+2x+8時(shí),解﹣x2+2x+8=0求得拋物線與x軸的交點(diǎn)坐標(biāo),然后根據(jù)A的坐標(biāo)和y2隨著x的增大而增大,求得y1與y2都經(jīng)過x軸上的同一點(diǎn)(﹣4,0),然后根據(jù)待定系數(shù)法求得即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解一次函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減小,以及對(duì)確定一次函數(shù)的表達(dá)式的理解,了解確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解市民“獲取新聞的最主要途徑”某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息解答下列問題:
(1)這次接受調(diào)查的市民總?cè)藬?shù)是;
(2)扇形統(tǒng)計(jì)圖中,“電視”所對(duì)應(yīng)的圓心角的度數(shù)是;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市約有80萬(wàn)人,請(qǐng)你估計(jì)其中將“電腦和手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC= ,BC=3,△DEF是邊長(zhǎng)為a(a為小于3的常數(shù))的等邊三角形,將△DEF沿AC方向平移,使點(diǎn)D在線段AC上,DE∥AB,設(shè)△DEF與△ABC重疊部分的周長(zhǎng)為T.

(1)求證:點(diǎn)E到AC的距離為一個(gè)常數(shù);
(2)若AD= ,當(dāng)a=2時(shí),求T的值;
(3)若點(diǎn)D運(yùn)動(dòng)到AC的中點(diǎn)處,請(qǐng)用含a的代數(shù)式表示T.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,將點(diǎn)A翻折到對(duì)角線BD上的點(diǎn)M處,折痕BE交AD于點(diǎn)E.將點(diǎn)C翻折到對(duì)角線BD上的點(diǎn)N處,折痕DF交BC于點(diǎn)F.
(1)求證:四邊形BFDE為平行四邊形;
(2)若四邊形BFDE為菱形,且AB=2,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a≠0,函數(shù)y= 與y=﹣ax2+a在同一直角坐標(biāo)系中的大致圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)x的函數(shù)y=kx2+2x-1的圖像與x軸僅有一個(gè)交點(diǎn),則實(shí)數(shù)k的值為。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(0,2),B(2,2),C(-1,-2),拋物線F: 與直線x=-2交于點(diǎn)P.

(1)當(dāng)拋物線F經(jīng)過點(diǎn)C時(shí),求它的表達(dá)式;
(2)拋物線F上有兩點(diǎn)M 、N ,若-2≤ , ,求m的取值范圍;
(3)設(shè)點(diǎn)P的縱坐標(biāo)為 ,求 的最小值,此時(shí)拋物線F上有兩點(diǎn)M 、N ,
≤-2,比較 的大;
(4)當(dāng)拋物線F與線段AB有公共點(diǎn)時(shí),直接寫出m的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有顏色不同的黑、白兩種顏色的球共5只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1000

摸到白球的次數(shù)m

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601


(1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近;(精確到0.1)
(2)試估算口袋中白種顏色的球有多少只?
(3)請(qǐng)畫樹狀圖或列表計(jì)算:從中先摸出一球,不放回,再摸出一球;這兩只球顏色不同的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了緩解長(zhǎng)沙市區(qū)內(nèi)一些主要路段交通擁擠的現(xiàn)狀,交警隊(duì)在一些主要路口設(shè)立了交通路況顯示牌(如圖).已知立桿AB高度是3m,從側(cè)面D點(diǎn)測(cè)得顯示牌頂端C點(diǎn)和底端B點(diǎn)的仰角分別是60°和45°.求路況顯示牌BC的高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案