【題目】某種電子產(chǎn)品共 件,其中有正品和次品.已知從中任意取出一件,取得的產(chǎn)品為次品的概率為
(1)該批產(chǎn)品有正品件;
(2)如果從中任意取出 件,利用列表或樹狀圖求取出 件都是正品的概率.

【答案】
(1)3
(2)解:畫樹狀圖得:

∵結果共有12種情況,且各種情況都是等可能的,其中兩次取出的都是正品共6種,

∴P(兩次取出的都是正品)=


【解析】(1)∵某種電子產(chǎn)品共4件,從中任意取出一件,取得的產(chǎn)品為次品的概率為

∴該批產(chǎn)品有正品為:4﹣4× =3.

故答案為:3;

(1)根據(jù)概率公式,得到該批產(chǎn)品的正品數(shù)值;(2)根據(jù)畫樹狀圖,得到結果共有12種情況,且各種情況都是等可能的,其中兩次取出的都是正品共6種,求出取出 2 件都是正品的概率.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學興趣活動課上,小明將等腰△ABC的底邊BC與直線1重合,問:

1)已知ABAC6,∠BAC120°,點PBC邊所在的直線l上移動,根據(jù)“直線外一點到直線上所有點的連線中垂線段最短”,小明發(fā)現(xiàn)AP的最小值是   

2)為進一步運用該結論,小明發(fā)現(xiàn)當AP最短時,在RtABP中,∠P90°,作了AD平分∠BAP,交BP于點D,點EF分別是AD、AP邊上的動點,連接PEEF,小明嘗試探索PE+EF的最小值,為轉化EF,小明在AB上截取AN,使得ANAF,連接NE,易證△AEF≌△AEN,從而將PE+EF轉化為PE+EN,轉化到(1)的情況,若BP3,AB6,AP3,則PE+EF的最小值為   ;

3)請應用以上轉化思想解決問題(3),在直角△ABC中,∠C90°,∠B30°,AC10,點DCD邊上的動點,連接AD,將線段AD順時針旋轉60°,得到線段AP,連接CP,求線段CP的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】玲玲家準備裝修一套新住房,若甲、乙兩個裝飾公司合作,需6周完成,共需裝修費為5.2萬元;若甲公司單獨做4周后,剩下的由乙公司來做,還需9周才能完成,共需裝修費4.8萬元.玲玲的爸爸媽媽商量后決定只選一個公司單獨完成.

1)如果從節(jié)約時間的角度考慮應選哪家公司?

2)如果從節(jié)約開支的角度考慮呢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器超市銷售每臺進價分別為200元、170元的AB兩種型號的電風扇,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

1800

第二周

4

10

3100

(進價、售價均保持不變,利潤=銷售收入-進貨成本)

1)求A、B兩種型號的電風扇的銷售單價;

2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?

3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在結束了380課時初中階段教學內(nèi)容的教學后,王老師計劃按原課程設置再增加70課時用于總復習,將380課時按內(nèi)容所占比例,繪制如下統(tǒng)計圖表(圖1、圖2),請根據(jù)圖表提供的信息,回答問題:

1)圖1統(tǒng)計與概率所在扇形的圓心角為   度;

2)圖2中的a   

3)在70課時的總復習中,王老師應安排多少課時復習圖形與幾何內(nèi)容?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一塊長、寬、高分別為6cm、4cm、3cm的長方體木塊,一只螞蟻要從長方體木塊的一個頂點A處,沿著長方體的表面到長方體上和A相對的頂點B處吃食物,那么它需要爬行的最短路徑的長是( )

A. cm B. cm C. cm D. 9cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對非負實數(shù)x“四舍五入到個位的值記為<x>,即當n為非負整數(shù)時,若,則<x>n,如<0.46>=0<3.67>=4。給出下列關于<x>的結論:

①<1.493>=1;

②<2x>=2<x>;

,則實數(shù)x的取值范圍是;

x≥0m為非負整數(shù)時,有

。

其中,正確的結論有  (填寫所有正確的序號)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點E是邊CD的中點,連接BE并延長,交AD延長線于點F,連接BD、CF.

(1)求證:△CEB≌△DEF;

(2)若AB=BF,試判斷四邊形BCFD的形狀,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點CA重合,點D落到D′處,折痕為EF

1)求證:△ABE≌△AD′F

2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結論.

查看答案和解析>>

同步練習冊答案