【題目】對非負(fù)實數(shù)x“四舍五入”到個位的值記為<x>,即當(dāng)n為非負(fù)整數(shù)時,若,則<x>=n,如<0.46>=0,<3.67>=4。給出下列關(guān)于<x>的結(jié)論:
①<1.493>=1;
②<2x>=2<x>;
③若,則實數(shù)x的取值范圍是;
④當(dāng)x≥0,m為非負(fù)整數(shù)時,有;
⑤。
其中,正確的結(jié)論有 (填寫所有正確的序號)。
【答案】①③④。
【解析】
①根據(jù)定義,∵,∴<1.493>=1。結(jié)論正確。
②用特例反證:∵<1.3>=1,<2×1.3>=<2.6>=3,∴<2×1.3>≠2<1.3>。
∴<2x>=2<x>不一定成立。結(jié)論錯誤。
③若,則。
∴實數(shù)x的取值范圍是。結(jié)論正確。
④設(shè)2013x=k+b,k為2013x的整數(shù)部分,b為其小數(shù)部分,
1)當(dāng)0≤b<時,<2013x>=k,
m+2013x=(m+k)+b,m+k為m+2013x的整數(shù)部分,b為其小數(shù)部分,< m+2013x>=m+k,
∴< m+2013x >=m+<2013x>。
2)當(dāng)b≥時,<2013x>=k+1,
則m+2013x=(m+k)+b,m+k為m+2013x的整數(shù)部分,b為其小數(shù)部分,< m+2013x >=m+k+1,
∴< m+2013x >=m+<2013x>
綜上:當(dāng)x≥0,m為非負(fù)整數(shù)時,< m+2013x >=m+<2013x>成立。結(jié)論正確。
⑤用特例反證::<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,
∴<0.6>+<0.7>≠<0.6+0.7>。∴不一定成立。結(jié)論錯誤。
綜上所述,正確的結(jié)論有①③④。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年我縣中考的體育測試成績改為等級制,即把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格.我縣5月份舉行了全縣九年級學(xué)生體育測試.現(xiàn)從中隨機抽取了部分學(xué)生的體育成績,并將其繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽樣測試的學(xué)生人數(shù)是;
(2)圖1中∠α的度數(shù)是 , 并把圖2條形統(tǒng)計圖補充完整;
(3)該縣九年級有學(xué)生9000名,如果全部參加這次中考體育科目測試,請估算不及格的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】彈簧掛上物體后會伸長,測得一彈簧的長度y(cm)與所掛重物的質(zhì)量x(kg)有下面的關(guān)系,那么彈簧總長y(cm)與所掛重物x(kg)之間的關(guān)系式為( )
A. y=x+12 B. y=0.5x+12
C. y=0.5x+10 D. y=x+10.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】提出命題:如圖,在四邊形ABCD中,∠A=∠C,∠ABC=∠ADC,求證:四邊形ABCD是平行四邊形.
小明提供了如下解答過程:
證明:連接BD.
∵∠1+∠3=180-∠A,∠2+∠4=180―∠C,∠A=∠C,
∴ ∠1+∠3=∠2+∠4.
∵∠ABC=∠ADC,
∴∠1=∠4,∠2=∠3.
∴AB∥CD,AD∥BC.
∴四邊形ABCD是平行四邊形(兩組對邊分別平行的四邊形是平行四邊形).
反思交流:(1)請問小明的解法正確嗎?如果有錯,說明錯在何處,并給出正確的證明過程.
(2)用語言敘述上述命題:___________________________________________________.
運用探究:(3)下列條件中,能確定四邊形ABCD是平行四邊形的是(_____)
A. ∠A∶∠B∶∠C∶∠D=1∶2∶3∶4 B. ∠A∶∠B∶∠C∶∠D=1∶3∶1∶3
C. ∠A∶∠B∶∠C∶∠D=2∶3∶3∶2 D. ∠A∶∠B∶∠C∶∠D=1∶1∶3∶3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店需要購進(jìn)甲、乙兩種商品共160件,其進(jìn)價和售價如下表:(注:獲利=售價-進(jìn)價)
(1)若商店計劃銷售完這批商品后能獲利1 100元,請問甲、乙兩種商品應(yīng)分別購進(jìn)多少件?
(2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并指出獲利最大的購貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點,一塊足夠大的三角板的直角頂點與點E重合,將三角板繞點E旋轉(zhuǎn),三角板的兩直角邊分別交AB,BC(或它們的延長線)于點M,N.
(1)觀察圖1,直接寫出∠AEM與∠BNE的關(guān)系是;(不用證明)
(2)如圖1,當(dāng)M、N都分別在AB、BC上時,可探究出BN與AM的關(guān)系為:;(不用證明)
(3)如圖2,當(dāng)M、N都分別在AB、BC的延長線上時,(2)中BN與AM的關(guān)系式是否仍然成立?若成立,請說明理由:若不成立,寫出你認(rèn)為成立的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知分式.
(1)當(dāng)____時,分式的值等于零;
(2)當(dāng)____時,分式無意義;
(3)當(dāng)___且___時分式的值是正數(shù);
(4)當(dāng)____時,分式的值是負(fù)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<4>=5,<-1.5>=-1.
解決下列問題:
(1)[-4.5]=___,<3.5>=___;
(2)若[x]=2,則x的取值范圍是___;若<y>=-1,則y的取值范圍是___.
(3)已知x,y滿足方程組求x,y的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com