【題目】用圖象法解下列二元一次方程組:
(1)
(2).
【答案】(1);(2)
【解析】
先把各個方程化成一次函數(shù)的形式,再作出對應的函數(shù)圖象,即可得到結(jié)果.
(1)由得,
由得,
如圖,在同一直角坐標系中,畫出一次函數(shù)和的圖象,它們的交點坐標為(1,3)
所以原二元一次方程組的解為;
(2)由得
由得
如圖,在同一直角坐標系中,畫出一次函數(shù) 和的圖象,它們的交點坐標為(2,-2)
所以原二元一次方程組的解為.
(1)由得
由得
如圖,在同一直角坐標系中,畫出一次函數(shù)和的圖象,它們的交點坐標為(1,3)
所以原二元一次方程組的解為;
(2)由得
由得
如圖,在同一直角坐標系中,畫出一次函數(shù) 和的圖象,它們的交點坐標為(2,-2)
所以原二元一次方程組的解為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=2∠D,連接OA、OB、OC、AC,OB與AC相交于點E,若∠COB=3∠AOB,OC=2 ,則圖中陰影部分面積是(結(jié)果保留π和根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點O在AB上,經(jīng)過點A的⊙O與BC相切于點D,交AB于點E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC = 90°,BC = 1,AC =.
(1)以點B為旋轉(zhuǎn)中心,將△ABC沿逆時針方向旋轉(zhuǎn)90°得到△A′BC′,請畫出變換后的圖形;
(2)求點A和點A′之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D,E在△ABC的邊BC上,連接AD,AE.有下面三個等式:①AB=AC;②AD=AE;③BD=CE.以此三個等式中的兩個作為命題的題設,另一個作為命題的結(jié)論,相構(gòu)成三個命題.解答下列問題
(1)寫出這三個命題,并直接判斷其是否是真命題;
(2)請選擇一個真命題進行證明(先寫出所選命題,然后證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩地相距200km,一列火車從B地出發(fā)沿BC方向以的速度行駛,在行駛過程中,這列火車離A地的路程與行駛時間之間的函數(shù)關系式是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧 于點P,Q,且點P,Q在AB異側(cè),連接OP.
(1)求證:AP=BQ;
(2)當BQ=4 時,求 的長(結(jié)果保留π);
(3)若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是定圓O的內(nèi)接三角形,AD為△ABC的高線,AE平分∠BAC交⊙O于E,交BC于G,連OE交BC于F,連OA,在下列結(jié)論中,①CE=2EF,②△ABG∽△AEC,③∠BAO=∠DAC,④ 為常量.其中正確的有 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是等邊三角形ABC內(nèi)部一個動點,∠APB=120°,⊙O是△APB的外接圓.AP,BP的延長線分別交BC,AC于D,E.
(1)求證:CA,CB是⊙O的切線;
(2)已知AB=6,G在BC上,BG=2,當PG取得最小值時,求PG的長及∠BGP的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com