【題目】如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧 于點P,Q,且點P,Q在AB異側(cè),連接OP.
(1)求證:AP=BQ;
(2)當BQ=4 時,求 的長(結(jié)果保留π);
(3)若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.

【答案】
(1)證明:連接OQ.

∵AP、BQ是⊙O的切線,

∴OP⊥AP,OQ⊥BQ,

∴∠APO=∠BQO=90°,

在Rt△APO和Rt△BQO中,

∴Rt△APO≌Rt△BQO,

∴AP=BQ


(2)解:∵Rt△APO≌Rt△BQO,

∴∠AOP=∠BOQ,

∴P、O、Q三點共線,

∵在Rt△BOQ中,cosB= = =

∴∠B=30°,∠BOQ=60°,

∴OQ= OB=4,

∵∠COD=90°,

∴∠QOD=90°+60°=150°,

∴優(yōu)弧 的長= = π


(3)解:∵△APO的外心是OA的中點,OA=8,

∴△APO的外心在扇形COD的內(nèi)部時,OC的取值范圍為4<OC<8


【解析】(1)連接OQ.只要證明Rt△APO≌Rt△BQO即可解決問題;(2)求出優(yōu)弧DQ的圓心角以及半徑即可解決問題;(3)由△APO的外心是OA的中點,OA=8,推出△APO的外心在扇形COD的內(nèi)部時,OC的取值范圍為4<OC<8;
【考點精析】解答此題的關(guān)鍵在于理解切線的性質(zhì)定理的相關(guān)知識,掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑,以及對弧長計算公式的理解,了解若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 的直角邊 上一點,以 為半徑的 與斜邊 相切于點 ,交 于點 .已知 ,

(1)求 的長;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:(1)﹣2+12a﹣18a (2)(x+4)-16x

(3)(x-2x)+2(x-2x)+1 (4)-28n+42m -14m n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用圖象法解下列二元一次方程組:

(1)

(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,過點D作DE⊥AD交AB于點E,以AE為直徑作⊙O.
(1)求證:BC是⊙O的切線;
(2)若AC=3,BC=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,都是邊長為1的等邊三角形.

四邊形ABCD是菱形嗎?為什么?

如圖2,將沿射線BD方向平移到的位置,則四邊形是平行四邊形嗎?為什么?

移動過程中,四邊形有可能是矩形嗎?如果是,請求出點B移動的距離寫出過程;如果不是,請說明理由3供操作時使用

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的外心為O,內(nèi)心為I,∠BOC=120°,∠BIC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是長方形紙袋,將紙袋沿EF折疊成圖2,再沿BF折疊成圖3,若DEF=α,用α表示圖3中CFE的大小為 _________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系xOy中,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A1,4),B3m)兩點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊答案