【題目】如圖,△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,連AD,BE,F(xiàn)為線段AD的中點,連接CF
(1)如圖1,當(dāng)D點在BC上時,求證:①BE=2CF,②BE⊥CF.
(2)如圖2,把△DEC繞C點順時針旋轉(zhuǎn)一個銳角,其他條件不變,問(1)中的關(guān)系是否仍然成立?如果成立請證明.如果不成立,請寫出相應(yīng)的正確的結(jié)論并加以證明.
【答案】
(1)
證明:
①∵△ABC和△DEC都是等腰直角三角形,
∴BC=AC,CD=CE,∠ACB=∠ECD=90°,
在△BCE和△ACD中
∴△BCE≌△ACD(SAS),
∴BE=AD,∠EBC=∠DAC,
∵F為線段AD的中點,
∴CF=AF=DF= AD
∴BE=2CF;
②∵AF=CF,
∴∠DAC=∠FCA,
∵∠BCF+∠ACF=90°,
∴∠BCF+∠EBC=90°,
即BE⊥CF;
(2)
證明:旋轉(zhuǎn)一個銳角后,(1)中的關(guān)系依然成立.
證明:如圖2,延長CF到M,使FM=FC,連接AM,DM,
又AF=DF,
∴四邊形AMDC為平行四邊形
∴AM=CD=CE,∠MAC=180°﹣∠ACD,
∠BCE=∠BCA+∠DCE﹣∠ACD=180°﹣∠ACD,
即∠MAC=∠BCE,
在△MAC和△ECB中
∴△MAC≌△ECB(SAS),
∴CM=BE;∠ACM=∠CBE,
∴BE=CM=2CF;
∴∠CBE+∠BCM=∠ACM+∠BCM=90°,
即BE⊥CF.
【解析】(1)①由條件可證明Rt△ADC≌Rt△BEC,可證得BE=AD,再利用直角三角形的性質(zhì)可證明BE=2CF;②由直角三角形的性質(zhì)可得CF=DF,可證明∠FCD=∠ADC,可證得∠EBC+∠FCD=90°,可證明結(jié)論;(2)延長CF到M,使FM=FC,連接AM,DM,可證明四邊形ACDM為平行四邊形,進一步可證明△MAC≌△ECB,則可得MC=BE,可證得BE=2CF,再結(jié)合∠ACB=90°,可證明BE⊥CF.
【考點精析】利用等腰直角三角形對題目進行判斷即可得到答案,需要熟知等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤不低于25%(不考慮其他因素),那么每件襯衫的標(biāo)價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寧波火車站北廣場將于2015年底投入使用,計劃在廣場內(nèi)種植A,B兩種花木共6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時完成各自的任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司開發(fā)處一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價為6元/件,該產(chǎn)品在正式投放市場前通過代銷點進行了為期一個月(30天)的試銷售,售價為10元/件,工作人員對銷售情況進行了跟蹤記錄,并將記錄情況繪制成圖象,圖中的折線ABC表示日銷售量y(件)與銷售時間x(天)之間的函數(shù)關(guān)系.
(1)求y與x之間的函數(shù)表達式,并寫出x的取值范圍;
(2)若該節(jié)能產(chǎn)品的日銷售利潤為W(元),求W與x之間的函數(shù)表達式,并求出日銷售利潤不超過1040元的天數(shù)共有多少天?
(3)若5≤x≤17,直接寫出第幾天的日銷售利潤最大,最大日銷售利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠A=∠D,∠1=∠2,下列條件中能使△ABC≌△DEF的有_____.
①∠E=∠B;②ED=BC;③AB=EF;④AF=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是半圓,連接AB,點O為AB的中點,點C,D在 上,連接AD,CO,BC,BD,OD.若∠COD=62°,且AD∥OC,則∠ABD的大小是( )
A.26°
B.28°
C.30°
D.32°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強擲兩枚質(zhì)地均勻的骰子,每個骰子的六個面上分別刻有1到6的點數(shù),則兩枚骰子點數(shù)相同的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y= 交x軸于點A,交y軸于點B,點A1、A2、A3,…在x軸上,點B1、B2、B3,…在直線l上.若△OB1A,△A1B2A2,△A2B3A3,…均為等邊三角形,則△A5B6A6的面積是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個直角三角形紙片ABO,放置在平面直角坐標(biāo)系中,點A( ,0),點B(0,1),點0(0,0).過邊OA上的動點M(點M不與點O,A重合)作MN丄AB于點N,沿著MN折疊該紙片,得頂點A的對應(yīng)點A′,設(shè)OM=m,折疊后的△AM′N與四邊形OMNB重疊部分的面積為S.
(1)如圖①,當(dāng)點A′與頂點B重合時,求點M的坐標(biāo);
(2)如圖②,當(dāng)點A′,落在第二象限時,A′M與OB相交于點C,試用含m的式子表示S;
(3)當(dāng)S= 時,求點M的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com