【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A,點B,點C均落在格點上,PBC與網(wǎng)格線的交點,連接AP.

()的長等于________

()為邊上一點,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段AQ,使,并簡要說明點Q的位置是如何找到的(不要求證明)_______

【答案】();()見解析.

【解析】

()根據(jù)網(wǎng)格特點,利用勾股定理即可求出BC的長;(Ⅱ)如圖,在網(wǎng)格上取格點,連接,交于點,連接,∠PAQ即為所求.

()BC==.

故答案為:

()如圖,BC=,AB=AC= ,

AB2+AC2=BC2,

∴∠B=C=45°.

∴若使∠PAQ=45°,只要PAQ∽△PCA,此時有 , ,取格點D,E,F,H可知BDP∽△CEP,得 , , , BDP∽△BEC, ,CE=4,得 ,求的 , ,進而求得 ,所以 .

作法:根據(jù)上述分析的比例關系,可以取格點M,N,使得BMCN,并且 ,可找到滿足條件的格點M,N,如下圖,連接MNBC于點Q,連接AQ即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,六邊形是⊙的內(nèi)接正六邊形,若正六邊形的面積等于,則⊙的面積等于 __________ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,將一個矩形紙片放置在平面直角坐標系中,點的坐標是,點的坐標是,點的坐標是.點的中點,在上取一點,將沿翻折,使點落在邊上的點處.

(Ⅰ)求點的坐標;

(Ⅱ)如圖②,若點是線段上的一個動點(點不與點重合),過點,設的長為的面積為,試用關于的代數(shù)式表示;

(Ⅲ)在軸、軸上分別存在點、,使得四邊形的周長最小,請直接寫出四邊形的周長最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的圓心為點,拋物線過點,與交于兩點,連接、,且,兩點的縱坐標分別是21

1)請直接寫出點的坐標,并求的值;

2)直線經(jīng)過點,與軸交于點.點(與點不重合)在該直線上,且,請判斷點是否在此拋物線上,并說明理由;

3)如果直線相切,請直接寫出滿足此條件的直線解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點PO外,PCO的切線,C為切點,直線POO相交于點AB.

1)若∠A30°,求證:PA3PB;

2)小明發(fā)現(xiàn),∠A在一定范圍內(nèi)變化時,始終有∠BCP90°﹣∠P)成立.請你寫出推理過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線經(jīng)過點A-34).

1)求b的值;

2過點A軸的平行線交拋物線于另一點B,在直線AB上任取一點P,作點A關于直線OP的對稱點C

①當點C恰巧落在軸時,求直線OP的表達式;

②連結BC,求BC的最小值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖1、圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,每個小正方形的頂點叫做格點.

1)在圖1中畫出等腰直角三角形MON,使點N在格點上,且∠MON=90°;

2)在圖2中以格點為頂點畫一個正方形ABCD,使正方形ABCD面積等于(1)中等腰直角三角形MON面積的4倍,并將正方形ABCD分割成以格點為頂點的四個全等的直角三角形和一個正方形,且正方形ABCD面積沒有剩余(畫出一種即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結OB,點DOB的中點,點E是線段AB上的動點,連結DE,作DFDE,交OA于點F,連結EF.已知點EA點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設移動時間為t秒.

(1)如圖1,當t=3時,求DF的長.

(2)如圖2,當點E在線段AB上移動的過程中,DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.

(3)連結AD,當ADDEF分成的兩部分的面積之比為1:2時,求相應的t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某食品廠生產(chǎn)一種半成品食材,成本為2/千克,每天的產(chǎn)量(百千克)與銷售價格(元/千克)滿足函數(shù)關系式,從市場反饋的信息發(fā)現(xiàn),該半成品食材每天的市場需求量(百千克)與銷售價格(元/千克)滿足一次函數(shù)關系,部分數(shù)據(jù)如表:

銷售價格(元/千克)

2

4

……

10

市場需求量(百千克)

12

10

……

4

已知按物價部門規(guī)定銷售價格不低于2/千克且不高于10/千克.

1)直接寫出的函數(shù)關系式,并注明自變量的取值范圍;

2)當每天的產(chǎn)量小于或等于市場需求量時,這種半成品食材能全部售出,而當每天的產(chǎn)量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質(zhì)期短而只能廢棄.

①當每天的半成品食材能全部售出時,求的取值范圍;

②求廠家每天獲得的利潤y(百元)與銷售價格的函數(shù)關系式;

3)在(2)的條件下,當______/千克時,利潤有最大值;若要使每天的利潤不低于24(百元),并盡可能地減少半成品食材的浪費,則應定為______/千克.

查看答案和解析>>

同步練習冊答案