【題目】如圖,△ABC是等腰直角三角形,AC=BC=a,以斜邊AB上的點(diǎn)O為圓心的圓分別與AC、BC相切于點(diǎn)E、F,與AB分別相交于點(diǎn)G、H,且EH的延長(zhǎng)線與CB的延長(zhǎng)線交于點(diǎn)D,則CD的長(zhǎng)為( 。
A. B. C. D.
【答案】B
【解析】
連接OE、OF,由切線的性質(zhì)結(jié)合結(jié)合直角三角形可得到正方形OECF,并且可求出⊙O的半徑為0.5a,則BF=a﹣0.5a=0.5a,再由切割線定理可得BF2=BHBG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性質(zhì)即可求出BH=BD,最終由CD=BC+BD,即可求出答案.
解:∵△ABC是等腰直角三角形,AC=BC=a,以斜邊AB上的點(diǎn)O為圓心的圓分別與AC、BC相切于點(diǎn)E、F,與AB分別相交于點(diǎn)G、H,且EH的延長(zhǎng)線與CB的延長(zhǎng)線交于點(diǎn)D
∴連接OE、OF,由切線的性質(zhì)可得OE=OF=⊙O的半徑,∠OEC=∠OFC=∠C=90°
∴四邊形OECF是正方形
∵由△ABC的面積可知×AC×BC=×AC×OE+×BC×OF
∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a
∵由切割線定理可得BF2=BHBG
∴a2=BH(BH+a)
∴BH=或BH=(舍去)
∵OE∥DB,OE=OH
∴△OEH∽△BDH
∴
∴BH=BD,CD=BC+BD=.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC,AB=16,以AB為直徑的半圓與BC邊交于點(diǎn)D,過點(diǎn)D作DF⊥AC,垂足為F,過點(diǎn)F作FG⊥AB,垂足為G,連結(jié)GD.
(1)求證:DF是⊙O的切線;
(2)求FG的長(zhǎng);
(3)求tan∠FGD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點(diǎn)作OF⊥AB交⊙O于點(diǎn)D,交AC于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F,點(diǎn)G是EF的中點(diǎn),連接CG
(1)判斷CG與⊙O的位置關(guān)系,并說明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時(shí),求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是半圓弧上一動(dòng)點(diǎn),連接PA、PB,過圓心O作交PA于點(diǎn)C,連接已知,設(shè)O,C兩點(diǎn)間的距離為xcm,B,C兩點(diǎn)間的距離為ycm.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行探究.
下面是小東的探究過程,請(qǐng)補(bǔ)充完整:
通過取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組值,如下表:
0 | 1 | 2 | 3 | ||||
3 | 6 |
說明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù)
建立直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
結(jié)合畫出的函數(shù)圖象,解決問題:直接寫出周長(zhǎng)C的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn).過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有△ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把△ABC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1.再把△A1B1C1向左平移2個(gè)單位,向下平移5個(gè)單位得到△A2B2C2.
(1)畫出△A1B1C1和△A2B2C2.
(2)直接寫出點(diǎn)B1、B2坐標(biāo).
(3)P(a,b)是△ABC的AC邊上任意一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)平移后P對(duì)應(yīng)的點(diǎn)分別為P1、P2,請(qǐng)直接寫出點(diǎn)P1、P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種蔬菜每千克售價(jià)(元)與銷售月份之間的關(guān)系如圖1所示,每千克成本(元)與銷售月份之間的關(guān)系如圖2所示,其中圖1中的點(diǎn)在同一條線段上,圖2中的點(diǎn)在同一條拋物線上,且拋物線的最低點(diǎn)的坐標(biāo)為(6,1).
(1)求出與之間滿足的函數(shù)表達(dá)式,并直接寫出的取值范圍;
(2)求出與之間滿足的函數(shù)表達(dá)式;
(3)設(shè)這種蔬菜每千克收益為元,試問在哪個(gè)月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價(jià)-成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,O點(diǎn)在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過點(diǎn)D作BC的平行線,與AB的延長(zhǎng)線相交于點(diǎn)P.
(1)求證:PD是⊙O的切線;
(2)求證:△PBD∽△DCA;
(3)當(dāng)AB=6,AC=8時(shí),求線段PB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com