【題目】在Rt△ABC中,∠ACB=90°,AC=BC,CD是∠ACB的角平分線,點(diǎn)E,F(xiàn)分別是邊AC, BC上的動(dòng)點(diǎn),AC=4,設(shè)AE=x,BF=y.
(1)若x+y=3,求四邊形CEDF的面積;
(2)當(dāng)DE⊥DF時(shí),如圖2,試探索x、y之間的數(shù)量關(guān)系.
【答案】(1)S四邊形CEDF= 5;(2)x+y=4.
【解析】
(1)在圖1中,過(guò)點(diǎn)D作DG⊥AC于點(diǎn)G,DH⊥BC于點(diǎn)H,由∠ACB=90°、AC=BC、CD是∠ACB的角平分線可得出∠A=∠B=∠ACD=∠BCD=45°,進(jìn)而可得出AD=CD=BD,根據(jù)等腰直角三角形的性質(zhì)可求出DG=DH=2,利用三角形的面積結(jié)合S四邊形CEDF=S△CDE+S△CDF、x+y=3,即可求出四邊形CEDF的面積;
(2)由DE⊥DF、CD⊥AB可得出∠ADE=∠CDF,結(jié)合AD=CD、∠A=∠DCF=45°,即可證出△ADE≌△CDF(ASA),根據(jù)全等三角形的性質(zhì)可得出AE=CF,進(jìn)而可得出AE+BF=CF+BF=BC,即x+y=4.
(1)在圖1中,過(guò)點(diǎn)D作DG⊥AC于點(diǎn)G,DH⊥BC于點(diǎn)H.
∵∠ACB=90°,AC=BC,CD是∠ACB的角平分線,
∴∠A=∠B=∠ACD=∠BCD=45°,
∴AD=CD=BD.
∵在等腰直角三角形ACD中,DG⊥AC,∠A=45°,
∴DG=AG=AC=2,
同理:DH=2.
∵S△CDE=CEDG=4-x,S△CDF=CFDH=4-y,
∴S四邊形CEDF=S△CDE+S△CDF=(4-x)+(4-y)=8-(x+y)=5;
(2)當(dāng)DE⊥DF時(shí),∠EDF=90°.
∵CD⊥AB,
∴∠ADE+∠EDC=∠EDC+∠CDF=90°,
∴∠ADE=∠CDF.
在△ADE與△CDF中,
,
∴△ADE≌△CDF(ASA),
∴AE=CF,
∴AE+BF=CF+BF=BC,即x+y=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到A1B1C1.
(1)在圖中畫(huà)出△A1B1C1;
(2)點(diǎn)A1,B1,C1的坐標(biāo)分別為 、 、 ;
(3)若y軸有一點(diǎn)P,使△PBC與△ABC面積相等,求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)要求畫(huà)圖,并回答問(wèn)題.
已知:直線AB,CD相交于點(diǎn)O,且OE⊥AB.
(1)過(guò)點(diǎn)O畫(huà)直線MN⊥CD;
(2)若點(diǎn)F是(1)中所畫(huà)直線MN上任意一點(diǎn)(O點(diǎn)除外),若∠AOC=35°,求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在Rt△ABC中,∠C=90°,點(diǎn)D是線段CA延長(zhǎng)線上一點(diǎn),且AD=AB.點(diǎn)F是線段AB上一點(diǎn),連接DF,以DF為斜邊作等腰Rt△DFE,連接EA,EA滿足條件EA⊥AB.
(1)若∠AEF=20°,∠ADE=50°,AC=2,求AB的長(zhǎng)度;
(2)求證:AE=AF+BC;
(3)如圖2,點(diǎn)F是線段BA延長(zhǎng)線上一點(diǎn),探究AE、AF、BC之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,AB=4cm,BC=8cm.點(diǎn)P從點(diǎn)A出發(fā),沿AB勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),沿C→B→A→D→C的路徑勻速運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),在B點(diǎn)處首次相遇后,點(diǎn)P的運(yùn)動(dòng)速度每秒提高了3cm,并沿B→C→D→A的路徑勻速運(yùn)動(dòng);點(diǎn)Q保持速度不變,繼續(xù)沿原路徑勻速運(yùn)動(dòng),3s后兩點(diǎn)在長(zhǎng)方形ABCD某一邊上的E點(diǎn)處第二次相遇后停止運(yùn)動(dòng).設(shè)點(diǎn)P原來(lái)的速度為xcm/s.
(1)點(diǎn)Q的速度為 cm/s(用含x的代數(shù)式表示);
。2)求點(diǎn)P原來(lái)的速度.
(3)判斷E點(diǎn)的位置并求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=6cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),△PMN周長(zhǎng)的最小值是6cm,則∠AOB的度數(shù)是( )
A. 25° B. 30° C. 35° D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】溫州蒼南馬站四季柚,聲名遠(yuǎn)播,今年又是一個(gè)豐收年,某經(jīng)銷商為了打開(kāi)銷路,對(duì)1 000個(gè)四季柚進(jìn)行打包優(yōu)惠出售.打包方式及售價(jià)如圖所示.假設(shè)用這兩種打包方式恰好裝完全部柚子.
(1)若銷售a箱紙盒裝和a袋編織袋裝四季柚的收入共950元,求a的值;
(2)當(dāng)銷售總收入為7 280元時(shí):
①若這批四季柚全部售完,請(qǐng)問(wèn)紙盒裝共包裝了多少箱,編織袋裝共包裝了多少袋.
②若該經(jīng)銷商留下b(b>0)箱紙盒裝送人,其余柚子全部售出,求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,直尺的寬度為2cm,A、B兩點(diǎn)在直尺的一條邊上,AB=8cm,C、D兩點(diǎn)在直尺的另一條邊上.若∠ACB=∠ADB=90°,則C、D兩點(diǎn)之間的距離為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】放風(fēng)箏是大家喜愛(ài)的一種運(yùn)動(dòng),星期天的上午小明在市政府廣場(chǎng)上放風(fēng)箏.如圖,他在A處不小心讓風(fēng)箏掛在了一棵樹(shù)梢上,風(fēng)箏固定在了D處,此時(shí)風(fēng)箏AD與水平線的夾角為30°,為了便于觀察,小明迅速向前邊移動(dòng),收線到達(dá)了離A處10米的B處,此時(shí)風(fēng)箏線BD與水平線的夾角為45°.已知點(diǎn)A,B,C在同一條水平直線上,請(qǐng)你求出小明此時(shí)所收回的風(fēng)箏線的長(zhǎng)度是多少米?(風(fēng)箏線AD,BD均為線段, ≈1.414, ≈1.732,最后結(jié)果精確到1米).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com