【題目】已知:AD是△ABC的高,且BD=CD.
(1)如圖1,求證:∠BAD=∠CAD;
(2)如圖2,點E在AD上,連接BE,將△ABE沿BE折疊得到△A′BE,A′B與AC相交于點F,若BE=BC,求∠BFC的大;
(3)如圖3,在(2)的條件下,連接EF,過點C作CG⊥EF,交EF的延長線于點G,若BF=10,EG=6,求線段CF的長.
【答案】(1)證明見解析;(2)∠BFC=60°;(3)CF=8.
【解析】
(1)易得AB=AC,∠BAD=∠CAD.
(2) 連接EC, 可證得△BCE是等邊三角形,∠BEC=60°,∠BED=30°且由翻折的性質可知:∠ABE=∠A′BE=∠ABF,可得∠BFC=∠FAB+∠FBA=2(∠BAE+∠ABE)=2∠BED=60°.
(3) 連接EC,作EH⊥AB于H,EN⊥AC于N,EM⊥BA′于M, 可證得Rt△EMB≌Rt△ENC,
BM=CN,BF﹣FM=CF+FN,可得CF的值.
(1)證明:如圖1中,
∵BD=CD,AD⊥BC,
∴AB=AC,
∴∠BAD=∠CAD.
(2)解:如圖2中,連接EC.
∵BD⊥BC,BD=CD,
∴EB=EC,
又∵EB=BC,
∴BE=EC=BC,
∴△BCE是等邊三角形,
∴∠BEC=60°,
∴∠BED=30°,
由翻折的性質可知:∠ABE=∠A′BE=∠ABF,
∴∠ABF=2∠ABE,由(1)可知∠FAB=2∠BAE,
∴∠BFC=∠FAB+∠FBA=2(∠BAE+∠ABE)=2∠BED=60°.
(3)解:如圖3中,連接EC,作EH⊥AB于H,EN⊥AC于N,EM⊥BA′于M.
∵∠BAD=∠CAD,∠ABE=∠A′BE,
∴EH=EN=EM,
∴∠AFE=∠EFB,
∵∠BFC=60°,
∴∠AFE=∠BFE=60°,
在Rt△EFM中,∵∠FEM=90°﹣60°=30°,
∴EF=2FM,設FM=m,則EF=2m,
∴FG=EG﹣EF=6﹣2m,
易知:FN=EF=m,CF=2FG=12﹣4m,
∵∠EMB=∠ENC=90°,EB=EC,EM=EN,
∴Rt△EMB≌Rt△ENC(HL),
∴BM=CN,
∴BF﹣FM=CF+FN,
∴10﹣m=12﹣4m+m,
∴m=1,
∴CF=12﹣4=8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,O為矩形ABCD對角線的交點,DE∥AC,CE∥BD.
(1)試判斷四邊形OCED的形狀,并說明理由;
(2)若AB=3,BC=4,求四邊形OCED的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AE是弦,OG⊥AE于點G,交⊙O 于點D,連結BD交AE于點F,延長AE至點C,連結BC.
(1)當BC=FC時,證明:BC是⊙O的切線;
(2)已知⊙O的半徑,當tanA=,求GF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120cm,高AD=80cm,要把它加工成一個矩形零件,使矩形PQMN的一邊在BC上,其余兩個頂點分別在AB、AC上.設PQ=xcm,矩形PQMN的面積為ycm2,請寫出y關于x的函數(shù)表達式(并注明x的取值范圍)_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“2018東臺西溪半程馬拉松”的賽事共有兩項:A、“半程馬拉松”、 B、“歡樂跑”。小明參加了該項賽事的志愿者服務工作, 組委會隨機將志愿者分配到兩個項目組.
(1)小明被分配到“半程馬拉松”項目組的概率為________.
(2)為估算本次賽事參加“半程馬拉松”的人數(shù),小明對部分參賽選手作如下調(diào)查:
調(diào)查總人數(shù) | 20 | 50 | 100 | 200 | 500 |
參加“半程馬拉松”人數(shù) | 15 | 33 | 72 | 139 | 356 |
參加“半程馬拉松”頻率 | 0.750 | 0.660 | 0.720 | 0.695 | 0.712 |
①請估算本次賽事參加“半程馬拉松”人數(shù)的概率為_______.(精確到0.1)
②若本次參賽選手大約有3000人,請你估計參加“半程馬拉松”的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個盒中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機摸取一個小球然后放回,再隨機摸出一個小球.
(Ⅰ)請用列表法(或畫樹狀圖法)列出所有可能的結果;
(Ⅱ)求兩次取出的小球標號相同的概率;
(Ⅲ)求兩次取出的小球標號的和大于6的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場,為了吸引顧客,在“白色情人節(jié)”當天舉辦了商品有獎酬賓活動,凡購物滿200元者,有兩種獎勵方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎的機會.已知在搖獎機內(nèi)裝有2個紅球和2個白球,除顏色外其它都相同,搖獎者必須從搖獎機內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色(如表)決定送禮金券的多少.
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 18 | 24 | 18 |
(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.
(2)如果一名顧客當天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實惠.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點P與點C重合,點Q、E、F分別在BC、AB、AC上(點E與點A、點B均不重合).
(1)當AE=8時,求EF的長;
(2)設AE=x,矩形EFPQ的面積為y.
①求y與x的函數(shù)關系式;
②當x為何值時,y有最大值,最大值是多少?
(3)當矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運動(當點P到達點B時停止運動),設運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關系式,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD交AB于點P,AP=2,BP=6,∠APC=30°,則CD的長為( 。
A. B. 2 C. 2 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com