【題目】如圖,二次函數(shù)的圖像與軸正半軸相交,其頂點坐標為,下列結(jié)論:①;②;③;④.其中正確的有______個.
【答案】
【解析】
①根據(jù)拋物線開口向下可得出a<0,由拋物線對稱軸為可得出b=a>0,結(jié)合拋物線圖象可知c>0,進而可得出abc<0,①正確;②由b=a可得出a+b=0,②正確;③根據(jù)拋物線頂點坐標為(,),由此可得出,去分母后即可得出4acb2=4a,③正確;④根據(jù)拋物線的對稱性可得出x=1與x=0時y值相等,由此可得出a+b+c=c>0,④錯誤.綜上即可得出結(jié)論.
①由拋物線開口向下,得;由拋物線對稱軸為,得;拋物線與軸交點在軸正半軸,故,正確
②正確
③由拋物線的頂點坐標為,得,正確
④由①得,由②得,,故④錯誤
正確為:①②③
故答案為:3.
科目:初中數(shù)學 來源: 題型:
【題目】為“創(chuàng)建文明城市,構建和諧社會”,更好的提高垃圾分類意識,某小區(qū)決定安裝垃圾分類的溫馨提示牌和垃圾箱,若購買3個溫馨提示牌和4個垃圾箱共需580元,購買5個溫馨提示牌和2個垃圾箱共需500元.
(1)購買1個溫馨提示牌和1個垃圾箱各需多少元?
(2)如果需要購買溫馨提示牌和垃圾箱共100個,費用不超過8000元,問:最多購買垃圾箱多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解全校1600名學生每周課外體育活動時間的情況,隨機調(diào)查了其中的部分學生,對這些學生每周課外體育活動時間(單位:小時)進行了統(tǒng)計,根據(jù)所得數(shù)據(jù)繪制了一副統(tǒng)計圖,根據(jù)以上信息及統(tǒng)計圖解答下列問題:
(1)本次接受隨機抽樣調(diào)查的學生人數(shù)為______.
(2)求這些學生每周課外體育活動時間的平均數(shù).
(3)估計全校學生每周課外體育活動時間不多于4小時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點E,過E作EF⊥AD于F.
(1)求證:四邊形ABEF是正方形;
(2)連接BF交AE于點O,連接DO,若CD=2,CE=1,求OD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由于霧霾天氣趨于嚴重,我市某電器商城根據(jù)民眾健康需求,代理銷售某種家用空氣凈化器,其進價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務.
(1)完成下列表格,并直接寫出月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關系式及售價x的取值范圍;
售價(元/臺) | 月銷售量(臺) |
400 | 200 |
250 | |
x |
(2)當售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.
(1)求該二次函數(shù)的解析式及點M的坐標;
(2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)點P是直線AC上的動點,若點P,點C,點M所構成的三角形與△BCD相似,請直接寫出所有點P的坐標(直接寫出結(jié)果,不必寫解答過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是⊙的直徑,點在⊙上.
(1)如圖①,點在⊙上,且,若20°,求的大小;
(2)如圖②,過點作⊙的切線,交的延長線于點,若⊙的直徑為,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線的解析式為,是拋物線上的一個動點,是拋物線對稱軸上的一點.
(1)求拋物線的頂點及與軸交點的坐標;
(2)是過點且平行于軸的直線,與拋物線的對稱軸的交點為,,垂足為點,連接,.
①當是等邊三角形時,求點的坐標;
②求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com