精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知二次函數y=x2+bx+cb,c為常數的圖象經過點A3,1,點C0,4,頂點為點M,過點A作ABx軸,交y軸于點D,交該二次函數圖象于點B,連結BC.

1求該二次函數的解析式及點M的坐標;

2若將該二次函數圖象向下平移mm>0個單位,使平移后得到的二次函數圖象的頂點落在ABC的內部不包括ABC的邊界,求m的取值范圍;

3點P是直線AC上的動點,若點P,點C,點M所構成的三角形與BCD相似,請直接寫出所有點P的坐標直接寫出結果,不必寫解答過程

【答案】1y=x2+2x+4;M1,5;22<m<4;3P1,P2,P33,1,P43,7

【解析】

試題分析:1將點A、點C的坐標代入函數解析式,即可求出b、c的值,通過配方法得到點M的坐標;2點M是沿著對稱軸直線x=1向下平移的,可先求出直線AC的解析式,將x=1代入求出點M在向下平移時與AC、AB相交時y的值,即可得到m的取值范圍;3由題意分析可得MCP=90°,則若PCM與BCD相似,則要進行分類討論,分成PCM∽△BDC或PCM∽△CDB兩種,然后利用邊的對應比值求出點坐標.

試題解析:1把點A3,1,點C0,4代入二次函數y=x2+bx+c得,

解得 二次函數解析式為y=x2+2x+4, 配方得y=x12+5,

點M的坐標為1,5;

2設直線AC解析式為y=kx+b,把點A3,1,C0,4代入得, 解得:

直線AC的解析式為y=x+4,如圖所示,對稱軸直線x=1與ABC兩邊分別交于點E、點F

把x=1代入直線AC解析式y(tǒng)=x+4解得y=3,則點E坐標為1,3,點F坐標為1,1

1<5m<3,解得2<m<4;

3連接MC,作MGy軸并延長交AC于點N,則點G坐標為0,5 MG=1,GC=54=1

MC== 把y=5代入y=x+4解得x=1,則點N坐標為1,5,

NG=GC,GM=GC, ∴∠NCG=GCM=45°, ∴∠NCM=90°,

由此可知,若點P在AC上,則MCP=90°,則點D與點C必為相似三角形對應點

若有PCM∽△BDC,則有

BD=1,CD=3, CP===, CD=DA=3, ∴∠DCA=45°,

若點P在y軸右側,作PHy軸, ∵∠PCH=45°,CP= PH==

把x=代入y=x+4,解得y=, P1;

同理可得,若點P在y軸左側,則把x=代入y=x+4,解得y= P2;

若有PCM∽△CDB,則有 CP==3 PH=3÷=3,

若點P在y軸右側,把x=3代入y=x+4,解得y=1;

若點P在y軸左側,把x=3代入y=x+4,解得y=7

P33,1;P43,7

所有符合題意得點P坐標有4個,分別為P1,P2,P33,1,P43,7

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】今年5月,某大型商業(yè)集團隨機抽取所屬的m家商業(yè)連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.

評估成績n(分

評定等級

頻數

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根據以上信息解答下列問題:

(1求m的值;

(2在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大;(結果用度、分、秒表示

(3從評估成績不少于80分的連鎖店中任選2家介紹營銷經驗,求其中至少有一家是A等級的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法中正確的是( 。

A. 三角形三條高所在的直線交于一點

B. 有且只有一條直線與已知直線平行

C. 垂直于同一條直線的兩條直線互相垂直

D. 從直線外一點到這條直線的垂線段,叫做這點到這條直線的距離

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:若點Pa,b)在函數y=的圖象上,將以a為二次項系數,b為一次項系數構造的二次函數y=ax2+bx稱為函數y=的一個派生函數.例如:點(2, )在函數y=的圖象上,則函數y=2x2+ 稱為函數y=的一個派生函數.現給出以下兩個命題:

1)存在函數y=的一個派生函數,其圖象的對稱軸在y軸的右側

2)函數y=的所有派生函數的圖象都經過同一點,下列判斷正確的是( 。

A. 命題(1)與命題(2)都是真命題

B. 命題(1)與命題(2)都是假命題

C. 命題(1)是假命題,命題(2)是真命題

D. 命題(1)是真命題,命題(2)是假命題

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】方程x2+4=kx有兩個相等的實數根,則k=_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】a+b4,ab=﹣6,求代數式a3b+2a2b2+ab3的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著某市養(yǎng)老機構(養(yǎng)老機構指社會福利院、養(yǎng)老院、社區(qū)養(yǎng)老中心等)建設穩(wěn)步推進,擁有的養(yǎng)老床位不斷增加.

1)該市的養(yǎng)老床位數從年底的萬個增長到年底的萬個,求該市這兩年(從年底到年底)擁有的養(yǎng)老床位數的平均年增長率;

2)若該市某社區(qū)今年準備新建一養(yǎng)老中心,其中規(guī)劃建造三類養(yǎng)老專用房間共間,這三類養(yǎng)老專用房間分別為單人間(個養(yǎng)老床位),雙人間(個養(yǎng)老床位),三人間(個養(yǎng)老床位),因實際需要,單人間房間數在之間(包括),且雙人間的房間數是單人間的倍,設規(guī)劃建造單人間的房間數為

若該養(yǎng)老中心建成后可提供養(yǎng)老床位個,求的值;

求該養(yǎng)老中心建成后最多提供養(yǎng)老床位多少個?最少提供養(yǎng)老床位多少個?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=-3(x+2)2的頂點坐標是_____________,若將它旋轉180后得新的拋物線,其解析式為________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+4與x軸交于A(﹣2,0)、B兩點,與y軸交于C點,其對稱軸為直線x=1.

(1)直接寫出拋物線的解析式: ;

(2)把線段AC沿x軸向右平移,設平移后A、C的對應點分別為A′、C′,當C′落在拋物線上時,求A′、C′的坐標;

(3)除(2)中的點A′、C′外,在x軸和拋物線上是否還分別存在點E、F,使得以A、C、E、F為頂點的四邊形為平行四邊形?若存在,求出E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案