【題目】對于反比例函數(shù)y= ,下列說法正確的是(
A.圖象經(jīng)過點(1,﹣1)
B.圖象位于第二、四象限
C.圖象是中心對稱圖形
D.當x<0時,y隨x的增大而增大

【答案】C
【解析】解:A、∵1×(﹣1)=﹣1≠1,∴點(1,﹣1)不在反比例函數(shù)y= 的圖象上,故本選項錯誤; B、∵k=1>0,∴反比例函數(shù)y= 的圖象在一、三象限,故本選項錯誤;
C、∵函數(shù)y= 是反比例函數(shù),∴此函數(shù)的圖象是中心對稱圖形,故本選項正確;
D、∵k=1>0,∴此函數(shù)在每一象限內(nèi)y隨x的增大而減小,故本選項錯誤.
故選:C.
【考點精析】掌握反比例函數(shù)的性質(zhì)是解答本題的根本,需要知道性質(zhì):當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,二次函數(shù)y=ax2+bx的圖象過點A(﹣1,3),頂點B的橫坐標為1.

(1)求這個二次函數(shù)的表達式;
(2)點P在該二次函數(shù)的圖象上,點Q在x軸上,若以A、B、P、Q為頂點的四邊形是平行四邊形,求點P的坐標;
(3)如圖3,一次函數(shù)y=kx(k>0)的圖象與該二次函數(shù)的圖象交于O、C兩點,點T為該二次函數(shù)圖象上位于直線OC下方的動點,過點T作直線TM⊥OC,垂足為點M,且M在線段OC上(不與O、C重合),過點T作直線TN∥y軸交OC于點N.若在點T運動的過程中, 為常數(shù),試確定k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標有一個數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個小球,對應的數(shù)字作為一個兩位數(shù)的個位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個小球,對應的數(shù)字作為這個兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個,求其算術(shù)平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,立方體的六個面上標著連續(xù)的整數(shù),若相對的兩個面上所標之數(shù)的和相等.則這六個數(shù)的和為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某品牌太陽能熱水器的實物圖和橫斷面示意圖,已知真空集熱管與支架CD所在直線相交于水箱橫斷面⊙O的圓心O,支架CD與水平面AE垂直,AB=150厘米,∠BAC=30°,另一根輔助支架DE=76厘米,∠CED=60°.
(1)求垂直支架CD的長度;(結(jié)果保留根號)
(2)求水箱半徑OD的長度.(結(jié)果保留三個有效數(shù)字,參考數(shù)據(jù): ≈1.414, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,放置在水平桌面上的臺燈的燈臂AB長為40cm,燈罩BC長為30cm,底座厚度為2cm,燈臂與底座構(gòu)成的∠BAD=60°.使用發(fā)現(xiàn),光線最佳時燈罩BC與水平線所成的角為30°,此時燈罩頂端C到桌面的高度CE是多少cm? (結(jié)果精確到0.1cm,參考數(shù)據(jù): ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為 的正方形ABCD沿對角線AC平移,使點A移至線段AC的中點A′處,得新正方形A′B′C′D′,新正方形與原正方形重疊部分(圖中陰影部分)的面積是(
A.
B.
C.1
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=2x﹣2與x軸交于點A,與y軸交于點B.點C是該直線上不同于B的點,且CA=AB.

(1)寫出A、B兩點坐標;

(2)過動點P(m,0)且垂直于x軸的直線與直線AB交于點D,若點D不在線段BC上,求m的取值范圍;

(3)若直線BE與直線AB所夾銳角為45°,請直接寫出直線BE的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】比較正五邊形與正六邊形,可以發(fā)現(xiàn)它們的相同點和不同點.例如: 它們的一個相同點:正五邊形的各邊相等,正六邊形的各邊也相等.
它們的一個不同點:正五邊形不是中心對稱圖形,正六邊形是中心對稱圖形.
請你再寫出它們的兩個相同點和不同點:
相同點:
;

不同點:


查看答案和解析>>

同步練習冊答案