精英家教網 > 初中數學 > 題目詳情

【題目】比較正五邊形與正六邊形,可以發(fā)現它們的相同點和不同點.例如: 它們的一個相同點:正五邊形的各邊相等,正六邊形的各邊也相等.
它們的一個不同點:正五邊形不是中心對稱圖形,正六邊形是中心對稱圖形.
請你再寫出它們的兩個相同點和不同點:
相同點:
;

不同點:
;

【答案】都是軸對稱圖形;都有外接圓和內切圓;內角和不同;對角線的條數不同
【解析】解:相同點不同點①都有相等的邊.①邊數不同;②都有相等的內角.②內角的度數不同;③都有外接圓和內切圓.③內角和不同;④都是軸對稱圖形.④對角線條數不同;⑤對稱軸都交于一點.⑤對稱軸條數不同.
【考點精析】掌握正多邊形和圓是解答本題的根本,需要知道圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角;圓的外切四邊形的兩組對邊的和相等.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】對于反比例函數y= ,下列說法正確的是(
A.圖象經過點(1,﹣1)
B.圖象位于第二、四象限
C.圖象是中心對稱圖形
D.當x<0時,y隨x的增大而增大

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】直接寫出結果

(1)﹣_____;

(2)5.4﹣(﹣3.6)=_____

(3)_____;

(4)÷(﹣5)=_____;

(5)(﹣8)×(﹣0.5)=_____;

(6)(﹣1)2014﹣|﹣1|=_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC是面積為 的等邊三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC與DE相交于點F,則△AEF的面積等于(結果保留根號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一點 (不與點A、B重合),連接CO并延長CO交⊙O于點D,連接AD.
(1)弦長AB等于(結果保留根號);
(2)當∠D=20°時,求∠BOD的度數;
(3)當AC的長度為多少時,以A、C、D為頂點的三角形與以B、C、0為頂點的三角形相似?請寫出解答過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】
(1)計算:22+(﹣1)4+( ﹣2)0﹣|﹣3|;
(2)先化簡,再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】【問題情境】 已知矩形的面積為a(a為常數,a>0),當該矩形的長為多少時,它的周長最。孔钚≈凳嵌嗌?
【數學模型】
設該矩形的長為x,周長為y,則y與x的函數關系式為y=2(x+ )(x>0).
【探索研究】
(1)我們可以借鑒以前研究函數的經驗,先探索函數y=x+ (x>0)的圖象和性質. ①填寫下表,畫出函數的圖象;

x

1

2

3

4

y

②觀察圖象,寫出該函數兩條不同類型的性質;
③在求二次函數y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數y=x+ (x>0)的最小值.
(2)用上述方法解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示, 中,∠BAC=90°,∠C=30°,BC=2,⊙O是△ABC的外接圓,D是CB延長線上一點,且BD=1,連接DA,點P是射線DA上的動點。

(1)求證DA是⊙O的切線;
(2)DP的長度為多少時,∠BPC的度數最大,最大度數是多少?請說明理由。
(3)點P運動的過程中,(PB+PC)的值能否達到最小,若能,求出這個最小值,若不能,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O的半徑為2,點A、C在⊙O上,線段BD經過圓心O,∠ABD=∠CDB=90°,AB=1,CD= ,則圖中陰影部分的面積為

查看答案和解析>>

同步練習冊答案