【題目】如圖,內(nèi)含于,的弦于點(diǎn),且.若陰影部分的面積為,則弦的長(zhǎng)為________

【答案】

【解析】

O點(diǎn)作ODAB,垂足為D,連接PC,AO,設(shè)⊙O的半徑為R,P的半徑為r,由直線與圓相切的性質(zhì)可知PC=r,又OPAB,則OD=PC=r,陰影部分面積可表示為π(R2-r2)=π(AO2-OD2),由已知可求AO2-OD2的值,在RtAOD中,由勾股定理可求AD,由垂徑定理可知AB=2AD.

如圖,過O點(diǎn)作ODAB,垂足為D,連接PC,AO,

設(shè)⊙O的半徑為R,P的半徑為r,

AB與⊙P相切于C點(diǎn),

PCAB,PC=r,

OPAB,

OD=PC=r,

由已知陰影部分面積為10π,

π(R2-r2)=10π,即R2-r2=10,

AO2-OD2=R2-r2=10,

RtAOD中,由勾股定理得AD2=AO2-OD2=10,

AD=

由垂徑定理可知AB=2AD=2

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E在等邊ABC的邊BC上,BE6,射線CDBC于點(diǎn)C,點(diǎn)P是射線CD上一動(dòng)點(diǎn),點(diǎn)F是線段AB上一動(dòng)點(diǎn),當(dāng)EP+PF的值最小時(shí),BF9,則AC為( 。

A.14B.13C.12D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=﹣x﹣1x軸,y軸的交點(diǎn)分別為A、B,以x=﹣1為對(duì)稱軸的拋物線y=x2+bx+cx軸分別交于點(diǎn)A、C,直線x=﹣1x軸交于點(diǎn)D.

(1)求拋物線的解析式;

(2)在線段AB上是否存在一點(diǎn)P,使以A,D,P為頂點(diǎn)的三角形與△AOB相似?若存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由;

(3)若點(diǎn)Q在第三象限內(nèi),且tan∠AQD=2,線段CQ是否存在最小值,如果存在直接寫出最小值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小張騎自行車勻速?gòu)募椎氐揭业,在途中因故停留了一段時(shí)間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時(shí)間,以800/分的速度勻速?gòu)囊业氐郊椎,兩人距離乙地的路程y()與小張出發(fā)后的時(shí)間x()之間的函數(shù)圖象如圖所示.

(1)求小張騎自行車的速度;

(2)求小張停留后再出發(fā)時(shí)yx之間的函數(shù)表達(dá)式;

(3)求小張與小李相遇時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣4x+3.

(1)用配方法將此二次函數(shù)化為頂點(diǎn)式;

(2)求出它的頂點(diǎn)坐標(biāo)和對(duì)稱軸;

(3)求出二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo);

(4)在所給的坐標(biāo)系上,畫出這個(gè)二次函數(shù)的圖象

(5)觀察圖象填空,使yx的增大而減小的x的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4),

(1)將ABC各頂點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別減5后得到A1B1C1;

①請(qǐng)?jiān)趫D中畫出A1B1C1;

②求這個(gè)變換過程中線段AC所掃過的區(qū)域面積;

(2)將ABC繞點(diǎn)(1,0)按逆時(shí)針方向旋轉(zhuǎn)90°后得到的A2B2C2,請(qǐng)?jiān)趫D中畫出A2B2C2,并分別寫出A2B2C2的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABO

(1)點(diǎn)A關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為_________,點(diǎn)B關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為_________;

(2)判斷△ABO的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若一個(gè)三角形中,其中有一個(gè)內(nèi)角是另外一個(gè)內(nèi)角的一半,則這樣的三角形叫做半角三角形”. 例如:等腰直角三角形就是半角三角形”.在鈍角三角形中,,,過點(diǎn)的直線邊于點(diǎn).點(diǎn)在直線上,且

1)若,點(diǎn)延長(zhǎng)線上.

當(dāng),點(diǎn)恰好為中點(diǎn)時(shí),依據(jù)題意補(bǔ)全圖1.請(qǐng)寫出圖中的一個(gè)半角三角形_______;

如圖2,若,圖中是否存在半角三角形除外),若存在,請(qǐng)寫出圖中的半角三角形,并證明;若不存在,請(qǐng)說明理由;

2)如圖3,若,保持的度數(shù)與(1)中②的結(jié)論相同,請(qǐng)直接寫出, 滿足的數(shù)量關(guān)系:______

查看答案和解析>>

同步練習(xí)冊(cè)答案