【題目】已知拋物線y=x2+bx+c與x軸交于A(4,0)、B(﹣2,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)點D為第四象限拋物線上一點,設(shè)點D的橫坐標(biāo)為m,四邊形ABCD的面積為S,求S與m的函數(shù)關(guān)系式,并求S的最值;
(3)點P在拋物線的對稱軸上,且∠BPC=45°,請直接寫出點P的坐標(biāo).
【答案】(1)y= x2﹣x﹣4;(2)S=﹣(m﹣2)2+16,S的最大值為16;(3)點P的坐標(biāo)為:(1,﹣1+)或(1,﹣1﹣).
【解析】
(1)根據(jù)交點式可求出拋物線的解析式;
(2)由S=S△OBC+S△OCD+S△ODA,即可求解;
(3)∠BPC=45°,則BC對應(yīng)的圓心角為90°,可作△BCP的外接圓R,則∠BRC=90°,過點R作y軸的平行線交過點C與x軸的平行線于點N、交x軸于點M,證明△BMR≌△RNC(AAS)可求出點R(1,-1),即點R在函數(shù)對稱軸上,即可求解.
解:(1)∵拋物線y=x2+bx+c與x軸交于A(4,0)、B(﹣2,0),
∴拋物線的表達式為:y=(x﹣4)(x+2)= x2﹣x﹣4;
(2)設(shè)點D(m, m2﹣m﹣4),可求點C坐標(biāo)為(0,-4),
∴S=S△OBC+S△OCD+S△ODA
=
=﹣(m﹣2)2+16,
當(dāng)m=2時,S有最大值為16;
(3)∠BPC=45°,則BC對應(yīng)的圓心角為90°,如圖作圓R,則∠BRC=90°,
圓R交函數(shù)對稱軸為點P,過點R作y軸的平行線交過點C與x軸的平行線于點N、交x軸于點M,設(shè)點R(m,n).
∵∠BMR+∠MRB=90°,∠MRB+∠CRN=90°,
∴∠CRN=∠MBR,
∠BMR=∠RNC=90°,BR=RC,
∴△BMR≌△RNC(AAS),
∴CN=RM,RN=BM,
即m+2=n+4,﹣n=m,
解得:m=1,n=﹣1,
即點R(1,﹣1),即點R在函數(shù)對稱軸上,
圓的半徑為:=,
則點P的坐標(biāo)為:(1,﹣1+)或(1,﹣1﹣).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲乙兩車分別從A、B兩地出發(fā),相向勻速行駛,已知乙車先出發(fā),1小時后甲車再出發(fā).一段時間后,甲乙兩車在休息站C地相遇:到達C地后,乙車不休息繼續(xù)按原速前往A地,甲車休息半小時后再按原速前往B地,甲車到達B地停止運動;乙車到A地后立刻原速返回B地,已知兩車間的距離y(km)隨乙車運動的時間x(h)變化如圖,則當(dāng)甲車到達B地時,乙車距離B地的距離為_____(km).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=60°,將△ABC繞點A順時針旋轉(zhuǎn)得△ADE,點C的對應(yīng)點E恰好落在AB上.
(1)求∠DBC的度數(shù);
(2)當(dāng)BD時,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點.
(1)求拋物線的解析式;
(2)在第二象限內(nèi)取一點C,作CD垂直x軸于點D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個單位,當(dāng)點C落在拋物線上時,求m的值;
(3)在(2)的條件下,當(dāng)點C第一次落在拋物線上記為點E,點P是拋物線對稱軸上一點.試探究:在拋物線上是否存在點Q,使以點B、E、P、Q為頂點的四邊形是平行四邊形?若存在,請出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AB為⊙O的直徑.
(1)作OB的垂直平分線CD,交⊙O于C、D兩點;
(2)在(1)的條件下,連接AC、AD,則△ACD為 三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC,點P是平面內(nèi)的任意一點(A、B、C三點除外),若點P與點A、B、C中任意兩點的連線的夾角為直角時,則稱點P為△ABC的一個勾股點.
(1)如圖1,若點P是△ABC內(nèi)一點,∠A=50°,∠ACP=10°,∠ABP=30°,試說明點P是△ABC的一個勾股點.
(2)如圖2,Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D是AB的中點,點P在射線CD上,若點P是△ABC的勾股點,則CP= ;
(3)如圖3,四邊形ABDC中,DB=DA,∠BCD=45°,AC=,CD=3.則點D能否是△ABC的勾股點,若能,求出BC的長:若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,⊙O的半徑OC垂直于弦AB,垂足為點D,點P在OC的延長線上,連結(jié)AP,AC平分∠PAB.
(1)求證:PA是⊙O的切線;
(2)若sinP=,AB=16,求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近日,某中學(xué)舉辦了一次以“弘揚傳統(tǒng)文化”為主題的漢字聽寫比賽,初一和初二兩個年級各有600名學(xué)生參加,為了更好地了解本次比賽成績的分布情況,學(xué)校分別從兩個年級隨機抽取了若干名學(xué)生的成績作為樣本進行分析,下面是初二年級學(xué)生成績樣本的頻數(shù)分布表和頻數(shù)分布直方圖(不完整,每組分數(shù)段中的分數(shù)包括最低分,不包括最高分)
初二學(xué)生樣本成績頻數(shù)分布表 | ||
分組/分 | 頻數(shù) | 頻率 |
50~60 | 2 | |
60~70 | 4 | 0.10 |
70~80 | 0.20 | |
80~90 | 14 | 0.35 |
90~100 | ||
合計 | 40 | 1.00 |
請根據(jù)所給信息,解答下列問題:
(1)補全成績頻數(shù)分布表和頻數(shù)分布直方圖.
(2)若初二學(xué)生成績樣本中80~90分段的具體成績?yōu)椋?/span>
80 80 81.5 82 82.5 82.5 83 84.5 85 86.5 87 88 88.5 89
①根據(jù)上述信息,估計初二學(xué)生成績的中位數(shù)為__________.
②若初一學(xué)生樣本成績的中位數(shù)為80,甲同學(xué)在比賽中得到了82分,在他所在的年級中位居275名,根據(jù)上述信息推斷甲同學(xué)所在年級為__________(選填“初一”或者“初二”).
③若成績在85分及以上均為“優(yōu)秀”,請你根據(jù)抽取的樣本數(shù)據(jù),估計初二年級學(xué)生中達到“優(yōu)秀”的學(xué)生人數(shù)為__________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點E,F分別為AB、BC的中點,點H是AD邊上一點,將△DCF沿DF折疊得△DC′F,將△AEH沿EH折疊后點A的對應(yīng)點A′剛好落在DC′上,則cos∠DA′H=______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com