在Rt△ACB中,∠C=90°,點(diǎn)O在AB上,以O(shè)為圓心,OA長(zhǎng)為半徑的圓與AC,AB分別交與點(diǎn)D,E,且∠CBD=∠A.
(1)判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論.
(2)若AD:AO=6:5,BC=3,求BD的長(zhǎng).

【答案】分析:(1)連接OD,DE,求出∠ADE=90°=∠C推出DE∥BC∴∠EDB=∠CBD=∠A,根據(jù)∠A+∠OED=90°求出∠EDB+∠ODE=90°,根據(jù)切線的判定推出即可;   
(2)求出AD:AE:DE=6:10:8,求出△ADE∽△BCD,推出AD:AE:DE=BC:BD:CD=6:10:8,代入求出即可.
解答:(1)直線BD與⊙O的位置關(guān)系是相切,
證明:連接OD,DE,
∵∠C=90°,
∴∠CBD+∠CDB=90°,
∵∠A=∠CBD,
∴∠A+∠CDB=90°,
∵OD=OA,
∴∠A=∠ADO,
∴∠ADO+∠CDB=90°,
∴∠ODB=180°-90°=90°,
∴OD⊥BD,
∵OD為半徑,
∴BD是⊙O切線;

(2)解:∵AD:AO=6:5,
∴AD:AE=6:10,
∴AD:AE:DE=6:10:8,
∵AE是直徑,
∴∠ADE=∠C=90°,
∵∠CBD=∠A,
∴△ADE∽△BCD,
∴AD:AE:DE=BC:BD:CD=6:10:8,
即BC:BD=6:10,
∵BC=3,
∴BD=5.
點(diǎn)評(píng):本題考查了切線的判定,平行線性質(zhì)和判定,等腰三角形性質(zhì)和判定,相似三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生的推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點(diǎn)D.
(1)求線段AD的長(zhǎng)度;
(2)點(diǎn)E是線段AC上的一點(diǎn),試問(wèn)當(dāng)點(diǎn)E在什么位置時(shí),直線ED與⊙O相切?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖州)如圖,已知在Rt△ACB中,∠C=90°,AB=13,AC=12,則cosB的值為
5
13
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•青銅峽市模擬)已知:如圖①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2),解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),PQ∥BC?
(2)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時(shí)刻t,使四邊形PQP′C為菱形?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•丹東一模)在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角頂角O在AB邊的中點(diǎn)上,這塊三角板繞O點(diǎn)旋轉(zhuǎn),兩條直角邊始終與AC、BC邊分別相交于E、F,連接EF,則在運(yùn)動(dòng)過(guò)程中,△OEF與△ABC的關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在Rt△ACB中,∠C=90°,AD平分∠BAC,若BC=16,BD=10,則點(diǎn)D到AB的距離是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案