【題目】已知,如圖,,垂足分別為、,,試說(shuō)明

將下面的解答過(guò)程補(bǔ)充完整,并填空(理由或數(shù)學(xué)式)

解:∵,(_______________)

______(______________________),

_________(____________________)

又∵(已知),

________(_____________________),

_______(_____________________),

(_____________________)

【答案】已知;在同一平面內(nèi),垂直于同一條直線的兩條直線平行;∠BCD(兩直線平行,同位角相等)DG(同旁內(nèi)角互補(bǔ),兩直線平行);∠BCD(兩直線平行,內(nèi)錯(cuò)角相等);∠CDG(等量代換)

【解析】

根據(jù)垂直定義和平行線的判定推出EFCD,推出∠BEF=BCD,根據(jù)平行線的判定推出BCDG,根據(jù)平行線的性質(zhì)得出∠CDG=BCD即可.

,(已知),

EFCD_(在同一平面內(nèi),垂直于同一條直線的兩條直線平行),

BCD(兩直線平行,同位角相等)

又∵(已知),

DG(同旁內(nèi)角互補(bǔ),兩直線平行),

BCD(兩直線平行,內(nèi)錯(cuò)角相等)

BCD(已證),

CDG(等量代換)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】七年級(jí)二班的幾位同學(xué)正在一起討論一個(gè)關(guān)于數(shù)軸上的點(diǎn)表示數(shù)的題目:

甲說(shuō):“這條數(shù)軸上的兩個(gè)點(diǎn)、表示的數(shù)都是絕對(duì)值是4的數(shù)”;

乙說(shuō):“點(diǎn)表示負(fù)整數(shù),點(diǎn)表示正整數(shù),且這兩個(gè)數(shù)的差是3”;

丙說(shuō):“點(diǎn)表示的數(shù)的相反數(shù)是它本身”.

1)請(qǐng)你根據(jù)以上三位同學(xué)的發(fā)言,畫出一條數(shù)軸,并描出、、、五個(gè)不同的點(diǎn).

2)求這個(gè)五個(gè)點(diǎn)表示的數(shù)的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠B=60°,對(duì)角線AC=BC,點(diǎn)EAB上,將CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60CF,且點(diǎn)FAD上.

(1)求證:AF=BE;

(2)AE=DF,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在Rt△ABC中,C=90,BC=6,AC=8.動(dòng)點(diǎn)M從點(diǎn)B開始沿邊BC向點(diǎn)C以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)N從點(diǎn)C開始沿邊CA向點(diǎn)A以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)MN同時(shí)出發(fā),且當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).過(guò)點(diǎn)MMDAC,交AB于點(diǎn)D,連接MN.設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).

(1)當(dāng)t為何值時(shí),四邊形ADMN為平行四邊形?

(2)是否存在t的值,使四邊形ADMN為菱形?若存在,求出t的值;若不存在,說(shuō)明理由.并探究只改變點(diǎn)N的速度(勻速運(yùn)動(dòng)),使四邊形ADMN在某一時(shí)刻為菱形,求點(diǎn)N的速度;

(3)如圖2,在整個(gè)運(yùn)動(dòng)過(guò)程中,求出線段MN中點(diǎn)P所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,EFABCD分別交于點(diǎn)G,H,∠CHG的平分線HMAB于點(diǎn)M,若∠EGB50°,則∠GMH的度數(shù)為( 。

A. 50°B. 55°C. 60°D. 65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,B,D為兩島上的兩座燈塔的塔頂,測(cè)量船于水面A處測(cè)得B點(diǎn)和D點(diǎn)的仰角分別為75°,30°.于水面C處測(cè)得B點(diǎn)和D點(diǎn)的仰角均為60°,AC=0.1km.

(1)試探究圖中B,D間距離與另外哪兩點(diǎn)間距離相等;

(2)求B點(diǎn)距水平面的高度(計(jì)算結(jié)果精確到0.01km,參考數(shù)據(jù):≈1.73,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(-22).

⑴如圖⑴,在△ABO為等腰直角三角形,求B點(diǎn)坐標(biāo).

⑵如圖⑴,在⑴的條件下,分別以ABOB為邊作等邊△ABC和等邊△OBD,連結(jié)OC,求∠COB的度數(shù).

⑶如圖⑵,過(guò)點(diǎn)AAMy軸于點(diǎn)M,點(diǎn)Ex軸正半軸上一點(diǎn),KME延長(zhǎng)線上一點(diǎn),以MK為直角邊作等腰直角三角形MKJ,∠MKJ=90°,過(guò)點(diǎn)AANx軸交MJ于點(diǎn)N,連結(jié)EN.則①的值不變;②的值不變,其中有且只有一個(gè)結(jié)論正確,請(qǐng)判斷出正確的結(jié)論,并加以證明和求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角三角板和直角三角板,,,

.

(1)如圖1,將頂點(diǎn)和頂點(diǎn)重合,保持三角板不動(dòng),將三角板繞點(diǎn)旋轉(zhuǎn).當(dāng)平分時(shí),的度數(shù);

(2)(1)的條件下,繼續(xù)旋轉(zhuǎn)三角板,猜想有怎樣的數(shù)量關(guān)系?并利用圖2所給的情形說(shuō)明理由;

(3)如圖3,將頂點(diǎn)和頂點(diǎn)重合,保持三角板不動(dòng),將三角板繞點(diǎn)旋轉(zhuǎn).當(dāng)落在內(nèi)部時(shí),直接寫出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD和正方形CEFG中,點(diǎn)DCG上,已知:BC1,CE7,HAF的中點(diǎn),則AF_____,CH_____

查看答案和解析>>

同步練習(xí)冊(cè)答案