【題目】張華在一次數(shù)學(xué)活動(dòng)中,利用在面積一定的矩形中,正方形的周長(zhǎng)最短的結(jié)論,推導(dǎo)出式子x0)的最小值是2”.其推導(dǎo)方法如下:在面積是1的矩形中設(shè)矩形的一邊長(zhǎng)為x,則另一邊長(zhǎng)是,矩形的周長(zhǎng)是2);當(dāng)矩形成為正方形時(shí),就有x=x0),解得x=1,這時(shí)矩形的周長(zhǎng)2=4最小,因此x0)的最小值是2.模仿張華的推導(dǎo),你求得式子x0)的最小值是( )

A. 2 B. 1 C. 6 D. 10

【答案】C

【解析】

試題仿照張華的推導(dǎo),在面積是9的矩形中設(shè)矩形的一邊長(zhǎng)為x,則另一邊長(zhǎng)是,矩形的周長(zhǎng)是2);當(dāng)矩形成為正方形時(shí),就有x=x0),解得x=3,這時(shí)矩形的周長(zhǎng)2=12最小,因此x0)的最小值是6.故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AC,BD相交于點(diǎn)O,EAB的中點(diǎn),DEAB

1)求∠ABC的度數(shù);

2)如果AC=,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知多項(xiàng)式與多項(xiàng)式的和中不含有項(xiàng)

1_____,_____.

2)計(jì)算:的值,并通過(guò)計(jì)算的結(jié)果,猜想的關(guān)系.

3)請(qǐng)你利用猜想計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=ax2+bx+cx軸交于點(diǎn)AB(1,0),與y軸交于點(diǎn)C,直線(xiàn)y=x﹣2經(jīng)過(guò)A,C兩點(diǎn),拋物線(xiàn)的頂點(diǎn)為D.

(1)求拋物線(xiàn)的解析式和頂點(diǎn)D的坐標(biāo);

(2)在y軸上是否存在一點(diǎn)G,使得GD+GB的值最?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△PAB是以AB為腰的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC, ∠B﹦90°,AB﹦8㎝,AD﹦24㎝,BC﹦26㎝,點(diǎn)p從點(diǎn)A出發(fā),以1㎝/s的速度向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C同時(shí)出發(fā),以3㎝/s的速度向點(diǎn)B運(yùn)動(dòng),規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng). 設(shè)運(yùn)動(dòng)時(shí)間為t s.

(1)t為何值時(shí),四邊形PQCD為平行四邊形?

(2)t為何值時(shí),四邊形PQCD為等腰梯形?(等腰梯形的兩腰相等,兩底角相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣1,4),C(﹣3,3).

(1)畫(huà)出ABC關(guān)于y軸對(duì)稱(chēng)的A1B1C1,并寫(xiě)出A1點(diǎn)的坐標(biāo)及sinB1A1C1的值;

(2)以原點(diǎn)O為位似中心,位似比為1:2,在y軸的左側(cè),畫(huà)出 將ABC放大后的A2B2C2,并寫(xiě)出A2點(diǎn)的坐標(biāo);

(3)若點(diǎn)D(a,b)在線(xiàn)段AB上,直接寫(xiě)出經(jīng)過(guò)(2)的變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△MNQ中,MN=11,NQ=,,矩形ABCD,BC=4,CD=3,點(diǎn)AM重合,ADMN重合.矩形ABCD沿著MQ方向平移,且平移速度為每秒5個(gè)單位,當(dāng)點(diǎn)AQ重合時(shí)停止運(yùn)動(dòng).

(1)MQ的長(zhǎng)度是   ;

(2)運(yùn)動(dòng)   秒,BCMN重合;

(3)設(shè)矩形ABCD與△MNQ重疊部分的面積為S,運(yùn)動(dòng)時(shí)間為t,求出St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】結(jié)合數(shù)軸與絕對(duì)值的知識(shí)回答下列問(wèn)題:

(1)數(shù)軸上表示41的兩點(diǎn)之間的距離是   ;表示﹣32兩點(diǎn)之間的距離是   ;一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于|mn|.如果表示數(shù)a和﹣2的兩點(diǎn)之間的距離是3,那么a   ;

(2)若數(shù)軸上表示數(shù)a的點(diǎn)位于﹣42之間,求|a+4|+|a﹣2|的值;

(3)當(dāng)a取何值時(shí),|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形 中,、 的平分線(xiàn) 分別與線(xiàn)段 交于點(diǎn) 交于點(diǎn)

(1) 求證:,;

(2) ,,求 的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案