【題目】如圖,∠A=∠B=90°,E是AB上的一點(diǎn),且AE=BC,∠1=∠2.
(1)求證:Rt△ADE與Rt△BEC全等;
(2)求證:△CDE是直角三角形.
【答案】
(1)解:全等.理由是:
∵∠1=∠2,
∴DE=CE,
∵∠A=∠B=90°,AE=BC,
在Rt△ADE和Rt△BEC中,
,
∴Rt△ADE≌Rt△BEC(HL).
(2)解:是直角三角形.理由是:
∵Rt△ADE≌Rt△BEC,
∴∠AED=∠BCE,
∵∠ECB+∠BEC=90°,
∴∠AED+∠BEC=90°.
∴∠DEC=90°,
∴△CDE是直角三角形.
【解析】(1)估計(jì)等邊對(duì)等角,推出DE=EC,再根據(jù)HL即可證明Rt△ADE≌Rt△BEC;(2)由Rt△ADE≌Rt△BEC,推出∠AED=∠BCE,由∠ECB+∠BEC=90°,推出∠AED+∠BEC=90°.即∠DEC=90°;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:
老舍先生曾說(shuō)“天堂是什么樣子,我不曉得,但從我的生活經(jīng)驗(yàn)去判斷,北平之秋便是天堂.”(摘自《住的夢(mèng)》)金黃色的銀杏葉為北京的秋增色不少.
小宇家附近新修了一段公路,他想給市政寫(xiě)信,建議在路的兩邊種上銀杏樹(shù).他先讓爸爸開(kāi)車(chē)駛過(guò)這段公路,發(fā)現(xiàn)速度為60千米/小時(shí),走了約3分鐘,由此估算這段路長(zhǎng)約千米.
然后小宇查閱資料,得知銀杏為落葉大喬木,成年銀杏樹(shù)樹(shù)冠直徑可達(dá)8米.小宇計(jì)劃從路的起點(diǎn)開(kāi)始,每a米種一棵樹(shù),繪制示意圖如下:
考慮到投入資金的限制,他設(shè)計(jì)了另一種方案,將原計(jì)劃的a擴(kuò)大一倍,則路的兩側(cè)共計(jì)減少200棵樹(shù),請(qǐng)你求出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若順次連接四邊形ABCD各邊的中點(diǎn)所得四邊形是矩形,則四邊形ABCD一定是( )
A.矩形
B.菱形
C.對(duì)角線互相垂直的四邊形
D.對(duì)角線相等的四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC、BD相交于點(diǎn)O,DH⊥AB于H, 連接OH,求證:∠DHO=∠DCO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖,點(diǎn)D在⊙O的直徑AB的延長(zhǎng)線上,點(diǎn)C在⊙O上,AC=CD,⊙O的半徑為3, 的長(zhǎng)為π.
(1)直線CD與⊙O相切嗎?說(shuō)明理由。
(2)求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,AB=AC,點(diǎn)E、F分別為邊AB、BC上的點(diǎn),且AE=BF,連接CE、AF交于點(diǎn)H,連接DH交AG于點(diǎn)O.則下列結(jié)論①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH,④AD2=ODDH中,正確的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD()
∴∠2=∠CGD(等量代換)
∴CE∥BF()
∴∠=∠BFD()
又∵∠B=∠C(已知)
∴∠BFD=∠B(等量代換)
∴AB∥CD()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=(x+2)2﹣1的圖象的對(duì)稱(chēng)軸為( )
A.x=2
B.x=﹣2
C.x=1
D.x=﹣1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com