【題目】二次函數(shù)y=(x+2)2﹣1的圖象的對稱軸為( )
A.x=2
B.x=﹣2
C.x=1
D.x=﹣1
【答案】B
【解析】解:∵二次函數(shù)y=(x+2)2﹣1,是頂點(diǎn)式,
∴對稱軸為:x=﹣2.
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B=90°,E是AB上的一點(diǎn),且AE=BC,∠1=∠2.
(1)求證:Rt△ADE與Rt△BEC全等;
(2)求證:△CDE是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是甲、乙兩人同一地點(diǎn)出發(fā)后,路程隨時間變化的圖象.
(1)此變化過程中,是自變量,是因變量.
(2)甲的速度乙的速度.(大于、等于、小于)
(3)6時表示;
(4)路程為150km,甲行駛了小時,乙行駛了小時.
(5)9時甲在乙的(前面、后面、相同位置)
(6)乙比甲先走了3小時,對嗎? .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)系不正確的是( )
A.若a﹣5>b﹣5,則a>b
B.若x2>1,則x>
C.若2a>﹣2b,則a>﹣b
D.若a>b,c>d,則a+c>b+d
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a=﹣(0.3)2 , b=﹣3﹣2 , c=(﹣ )﹣2 , d=(﹣ )0 , 用“<”連接a、b、c、d為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,將△AOB繞點(diǎn)B逆時針旋轉(zhuǎn)90°后得到△A′O′B.若反比例函數(shù)y=的圖象恰好經(jīng)過斜邊A′B的中點(diǎn)C,S△ABO=4,tan∠BAO=2,則k的值為( )
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā),沿折線ABCD方向以3cm/s的速度勻速運(yùn)動;點(diǎn)Q從點(diǎn)D出發(fā),沿線段DC方向以2cm/s的速度勻速運(yùn)動.已知兩點(diǎn)同時出發(fā),當(dāng)一個點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也停止運(yùn)動,設(shè)運(yùn)動時間為t(s).
(1)求CD的長;
(2)當(dāng)四邊形PBQD為平行四邊形時,求四邊形PBQD的周長;
(3)在點(diǎn)P、Q的運(yùn)動過程中,是否存在某一時刻,使得△BPQ的面積為20cm2?若存在,請求出所有滿足條件的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形ABCD的頂點(diǎn)B,C在x軸的正半軸上,反比例函數(shù)在第一象限的圖象經(jīng)過頂點(diǎn)A(m,m+3)和CD上的點(diǎn)E,且OB-CE=1。直線l過O、E兩點(diǎn),則tan∠EOC的值為( )
A. B. 5 C. D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com