【題目】如圖,在平面直角坐標系中,菱形OABC的一邊OAx軸正半軸上,OB2,∠C120°.將菱形OABC繞原點O順時針旋轉(zhuǎn)75°至第四象限OA′B′C′的位置,則點B′的坐標為(

A. 2, B. 2,﹣ C. , D. ,﹣

【答案】D

【解析】

BHx軸于H點,連結(jié)OB,根據(jù)菱形的性質(zhì)得到∠AOB=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BOB=75°,OB=OB=2,則∠AOB=BOB-AOB=45°,所以△OBH為等腰直角三角形,根據(jù)等腰直角三角形性質(zhì)可計算得OH=BH=,然后根據(jù)第四象限內(nèi)點的坐標特征即可得出B′點的坐標.

BHx軸于H點,連結(jié)OB,如圖,

∵四邊形OABC為菱形,

∴∠AOC=180°-C=60°,OB平分∠AOC,

∴∠AOB=30°,

∵菱形OABC繞原點O順時針旋轉(zhuǎn)75°至第四象限OABC′的位置,

∴∠BOB=75°,OB=OB=2

∴∠AOB=BOB-AOB=45°,

∴△OBH為等腰直角三角形,

OH=BH=OB=,

∵點B′在第四象限,

∴點B′的坐標為(,-).

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B、C、D都在⊙O上,過點CACBDOB延長線于點A,連接CD,且∠CDB=OBD=30°DB=cm

1)求證:AC是⊙O的切線;

2求由弦CDBD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線AB與函數(shù)yx>0)的圖象交于點Am,2),B(2,n).過點AAC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使ODOC,且ACD的面積是6,連接BC

(1)求m,kn的值;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:6x4-35x3+62x2-35x+6=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4cm,以正方形的一邊BC為直徑在正方形ABCD內(nèi)作半圓,過A作半圓的切線,與半圓相切于F點,與DC相交于E點,則△ADE的面積為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進行了隨機調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題

(1)本次調(diào)查的學(xué)生有多少人?

(2)補全上面的條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中C對應(yīng)的中心角度數(shù)是_____;

(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點 (不與B,C重合),∠ADE=∠B=α,DEAC于點E,且 .下列結(jié)論: ①△ADE∽△ACD;BD=6時,△ABD△DCE全等;③△DCE為直角三角形時,BD8;④CD2=CECA.其中正確的結(jié)論是________(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,PC切⊙O于C交AB的延長線于點P,∠CAP=35°,那么∠CPO的度數(shù)等于(  。

A. 15° B. 20° C. 25° D. 30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鳳城商場經(jīng)銷一種高檔水果,售價為每千克50

1)連續(xù)兩次降價后售價為每千克32元,若每次下降的百分率相同.求平均下降的百分率;

2)已知這種水果的進價為每千克40元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),若每千克漲價1元,日銷售量將減少20千克,每千克應(yīng)漲價多少元才能使每天獲得的利潤最大?

查看答案和解析>>

同步練習(xí)冊答案