已知直線L1與L2相交于點(diǎn)A,L1的函數(shù)表達(dá)式為:y=2x+3,點(diǎn)A的橫坐標(biāo)是-1,且L2與y軸交于點(diǎn)P,直線y=-
12
x+3與y軸交于點(diǎn)Q,點(diǎn)P與點(diǎn)Q關(guān)于x軸對稱,求直線L2的函數(shù)表達(dá)式.
分析:根據(jù)L1的表達(dá)式求出點(diǎn)A的坐標(biāo),再根據(jù)直線y=-
1
2
x+3求出點(diǎn)Q的坐標(biāo),然后根據(jù)點(diǎn)P與點(diǎn)Q關(guān)于x軸對稱求出點(diǎn)Q的坐標(biāo),然后利用待定系數(shù)法求解直線L2的函數(shù)表達(dá)式.
解答:精英家教網(wǎng)解:當(dāng)x=-1時(shí),y=2×(-1)+3=1,
∴點(diǎn)A的坐標(biāo)是(-1,1),
當(dāng)x=0時(shí),y=-
1
2
×0+3=3,
∴點(diǎn)Q的坐標(biāo)是(0,3),
∵點(diǎn)P與點(diǎn)Q關(guān)于x軸對稱,
∴點(diǎn)P的坐標(biāo)是(0,-3),
設(shè)直線L2的解析式是:y=kx+b,
-k+b=1
b=-3
,
解得
k=-4
b=-3
,
∴直線L2的解析式是:y=-4x-3.
點(diǎn)評:本題主要考查了兩直線相交的問題,待定系數(shù)法求函數(shù)解析式,求出點(diǎn)A、P的坐標(biāo)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l1經(jīng)過點(diǎn)A(-2,0)和點(diǎn)B(0,
2
3
3
),直線l2的函數(shù)表達(dá)式為y=-
3
3
x+
4
3
3
,l1與l2相交于點(diǎn)P.⊙C是一個(gè)動(dòng)圓,圓心C在直線l1上運(yùn)動(dòng),設(shè)圓心C的橫坐標(biāo)是a.過點(diǎn)C作CM⊥x軸,垂足是點(diǎn)M.
(1)填空:直線l1的函數(shù)表達(dá)式是
 
,交點(diǎn)P的坐標(biāo)是
 
,∠FPB的度數(shù)是
 
°;
(2)當(dāng)⊙C和直線l2相切時(shí),請證明點(diǎn)P到直線的距離CM等于⊙C的半徑R,并寫出R=3
2
-2時(shí)a的值;
(3)當(dāng)⊙C和直線l2不相離時(shí),已知⊙C的半徑R=3
2
-2,記四邊形NMOB的面積為S(其中點(diǎn)N精英家教網(wǎng)是直線CM與l2的交點(diǎn)).S是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆湖北省蘄春縣劉河中學(xué)九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷(B) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知直線l1經(jīng)過點(diǎn)A(-2,0)和點(diǎn)B(0,),直線l2的函數(shù)表達(dá)式為,l1與l2相交于點(diǎn)P.⊙C是一個(gè)動(dòng)圓,圓心C在直線l1上運(yùn)動(dòng),設(shè)圓心C的橫坐標(biāo)是a.過點(diǎn)C作CM⊥x軸,垂足是點(diǎn)M.
【小題1】求直線l1的函數(shù)表達(dá)式;
【小題2】 當(dāng)⊙C和直線l2相切時(shí),請證明點(diǎn)P到直線CM的距離等于⊙C的半徑R,并寫出R=時(shí)a的值.
【小題3】當(dāng)⊙C和直線l2不相離時(shí),已知⊙C的半徑R=,記四邊形NMOB的面積為S(其中點(diǎn)N是直線CM與l2的交點(diǎn)).S是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(江蘇宿遷卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,已知直線l1:y=x與直線l2:y=-x+6相交于點(diǎn)M,直線l2與x軸相較于點(diǎn)N.
求M,N的坐標(biāo);
在矩形ABCD中,已知AB=1,BC=2,邊AB在x軸上,矩形ABCD沿x軸自左向右以每秒1個(gè)
單位長度的速度移動(dòng).設(shè)矩形ABCD與△OMN的重疊部分的面積為S.移動(dòng)的時(shí)間為t(從點(diǎn)B與點(diǎn)O重合時(shí)開始計(jì)時(shí),到點(diǎn)A與點(diǎn)N重合時(shí)計(jì)時(shí)結(jié)束)。直接寫出S與自變量t之間的函數(shù)關(guān)系式(不需要給出解答過程);
在(2)的條件下,當(dāng)t為何值時(shí),S的值最大?并求出最大值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(江蘇宿遷卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,已知直線l1:y=x與直線l2:y=-x+6相交于點(diǎn)M,直線l2與x軸相較于點(diǎn)N.

求M,N的坐標(biāo);

在矩形ABCD中,已知AB=1,BC=2,邊AB在x軸上,矩形ABCD沿x軸自左向右以每秒1個(gè)

單位長度的速度移動(dòng).設(shè)矩形ABCD與△OMN的重疊部分的面積為S.移動(dòng)的時(shí)間為t(從點(diǎn)B與點(diǎn)O重合時(shí)開始計(jì)時(shí),到點(diǎn)A與點(diǎn)N重合時(shí)計(jì)時(shí)結(jié)束)。直接寫出S與自變量t之間的函數(shù)關(guān)系式(不需要給出解答過程);

在(2)的條件下,當(dāng)t為何值時(shí),S的值最大?并求出最大值.

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷(B) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知直線l1經(jīng)過點(diǎn)A(-2,0)和點(diǎn)B(0,),直線l2的函數(shù)表達(dá)式為,l1與l2相交于點(diǎn)P.⊙C是一個(gè)動(dòng)圓,圓心C在直線l1上運(yùn)動(dòng),設(shè)圓心C的橫坐標(biāo)是a.過點(diǎn)C作CM⊥x軸,垂足是點(diǎn)M.

 1.求直線l1的函數(shù)表達(dá)式;

  2. 當(dāng)⊙C和直線l2相切時(shí),請證明點(diǎn)P到直線CM的距離等于⊙C的半徑R,并寫出R=時(shí)a的值.

 3.當(dāng)⊙C和直線l2不相離時(shí),已知⊙C的半徑R=,記四邊形NMOB的面積為S(其中點(diǎn)N是直線CM與l2的交點(diǎn)).S是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)a的值;若不存在,請說明理由.

 

 

 

查看答案和解析>>

同步練習(xí)冊答案