【題目】在平面直角坐標(biāo)系中,把橫縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“整點(diǎn)”.
(1)直接寫出函數(shù)y= 圖象上的所有“整點(diǎn)”A1 , A2 , A3 , …的坐標(biāo);
(2)在(1)的所有整點(diǎn)中任取兩點(diǎn),用樹狀圖或列表法求出這兩點(diǎn)關(guān)于原點(diǎn)對稱的概率.
【答案】
(1)解:由題意可得
函數(shù)y= 圖象上的所有“整點(diǎn)”的坐標(biāo)為:A1(﹣3,﹣1),A2(﹣1,﹣3),A3(1,3),A4(3,1)
(2)解:所有的可能性如下圖所示,
由圖可知,共有12種結(jié)果,關(guān)于原點(diǎn)對稱的有4種,
∴P(關(guān)于原點(diǎn)對稱)=
【解析】(1)根據(jù)題意,可以直接寫出函數(shù)y= 圖象上的所有“整點(diǎn)”;(2)根據(jù)題意可以用樹狀圖寫出所有的可能性,從而可以求得兩點(diǎn)關(guān)于原點(diǎn)對稱的概率.本題考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、列表法與樹狀圖法,解題的關(guān)鍵是明確題意,寫出所有的可能性,利用數(shù)形結(jié)合的思想解答問題.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解列表法與樹狀圖法(當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC=90°, D是直線AB上的點(diǎn),AD=BC ,過點(diǎn)A作AF⊥AB,并截取AF=DB ,連接DC、DF、CF ,判斷△CDF的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,要得到△ABD≌△ACE,從下列條件中補(bǔ)選一個,則錯誤的是( )
A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
小銘和小雨在學(xué)習(xí)過程中有如下一段對話:
小銘:“我知道一般當(dāng)m≠n時,≠.可是我見到有這樣一個神奇的等式:
=(其中a,b為任意實數(shù),且b≠0).你相信它成立嗎?”
小雨:“我可以先給a,b取幾組特殊值驗證一下看看.”
完成下列任務(wù):
(1)請選擇兩組你喜歡的、合適的a,b的值,分別代入閱讀材料中的等式,寫出代入后得到的具體等式并驗證它們是否成立(在相應(yīng)方框內(nèi)打勾);
① 當(dāng)a= ,b= 時,等式 (□成立;□不成立);
② 當(dāng)a= ,b= 時,等式 (□成立;□不成立).
(2)對于任意實數(shù)a,b(b≠0),通過計算說明=是否成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為平行四邊形ABCD邊AD上一點(diǎn),E、F分別是PB、PC(靠近點(diǎn)P)的三等分點(diǎn),△PEF、△PDC、△PAB的面積分別為S1、S2、S3 , 若AD=2,AB=2 ,∠A=60°,則S1+S2+S3的值為( )
A.
B.
C.
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某圖書館開展兩種方式的租書業(yè)務(wù):一種是使用會員卡,另一種是使用租書卡,使用這兩種卡租書,租書金額y(元)與租書時間x(天)之間的關(guān)系如下圖所示。
(1)分別寫出用租書卡和會員卡租書的金額y(元)與租書時間x(天)之間的函數(shù)關(guān)系式;
(2)兩種租書方式,選取那種比較合適?說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 的對角線 AC 與 BD 相交于點(diǎn) O,CE∥BD, DE∥AC , AD=2, DE=2,則四邊形 OCED 的面積為( 。
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是BC的中點(diǎn),F是CD上一點(diǎn),且CF=CD,求證:∠AEF=90°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com