【題目】已知關(guān)于x的一元二次方程x2﹣6x+k=0.
(1)當(dāng)它有兩個(gè)實(shí)數(shù)根時(shí),求k的范圍;
(2)當(dāng)k=﹣11時(shí),假設(shè)方程兩根是x1,x2,求x12+x22+8的值.
【答案】(1)k的取值范圍是k≤9;(2)66.
【解析】
試題分析:(1)根據(jù)關(guān)于x的一元二次方程x2﹣6x+k=0有兩個(gè)實(shí)數(shù)根,可得△≥0,從而可以得到k的范圍;
(2)根據(jù)k=﹣11,方程兩根是x1,x2,可以得到兩根之和與兩根之積,從而可以得到x12+x22+8的值.
解:(1)∵關(guān)于x的一元二次方程x2﹣6x+k=0,
∴當(dāng)它有兩個(gè)實(shí)數(shù)根時(shí),△=(﹣6)2﹣4×1×k≥0,
解得,k≤9,
即k的取值范圍是k≤9;
(2)∵k=﹣11,
∴x2﹣6x﹣11=0,
∴,
∴x12+x22+8==62﹣2×(﹣11)+8=66,
即x12+x22+8的值是66.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( )
A.3a+4b=7ab B.(ab3)3=ab6 C.(a+2)2=a2+4 D.x12÷x6=x6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙丙三地的海拔高度為20米,-15米,-10米,那么最高的地方比最低的地方高 ( )
A、5米 B、10米 C、25米 D、35米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某草莓種植農(nóng)戶喜獲豐收,共收獲草莓2000kg.經(jīng)市場(chǎng)調(diào)查,可采用批發(fā)、零售兩種銷(xiāo)售方式,這兩種銷(xiāo)售方式每kg草莓的利潤(rùn)如下表:
銷(xiāo)售方式 | 批發(fā) | 零售 |
利潤(rùn)(元/kg) | 6 | 12 |
設(shè)按計(jì)劃全部售出后的總利潤(rùn)為y元,其中批發(fā)量為xkg.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若零售量不超過(guò)批發(fā)量的4倍,求該農(nóng)戶按計(jì)劃全部售完后獲得的最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】山西特產(chǎn)專賣(mài)店銷(xiāo)售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷(xiāo)售可增加20千克,若該專賣(mài)店銷(xiāo)售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)D是BC邊上的中點(diǎn),點(diǎn)E在AD上,那么下列結(jié)論不一定正確的是( )
A.AD⊥BC B.∠EBC=∠ECB C.∠ABE=∠ACE D.AE=BE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在△ABC的邊AC上,要判斷△ABP∽△ACB,添加一個(gè)條件,不正確的是( )
A. ∠ABP=∠C B. ∠APB=∠ABC C. = D. =
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com