【題目】閱讀理解:己知:對于實數(shù)a≥0,b≥0,滿足a+b≥2,當且僅當a = b時,等號成立,此時取得代數(shù)式a+b的最小值.
根據(jù)以上結(jié)論,解決以下問題:
(1)拓展:若a>0,當且僅當a=___時,a+有最小值,最小值為____;
(2)應用:
①如圖1,已知點P為雙曲線y=(x>0)上的任意一點,過點P作PA⊥x軸,PB丄y軸,四邊形OAPB的周長取得最小值時,求出點P的坐標以及周長最小值:
②如圖2,已知點Q是雙曲線y=(x>0)上一點,且PQ∥x軸, 連接OP、OQ,當線段OP取得最小值時,在平面內(nèi)取一點C,使得以0、P、Q、C為頂點的四邊形是平行四邊形,求出點C的坐標.
【答案】(1)1;2;(2)P(2,2);周長最小8;(3)(-2,0)、(2,0)或(6,4).
【解析】
(1)根據(jù)題意給的定義直接代入計算即可.
(2)①設出坐標點,根據(jù)第一問得出的結(jié)論直接應用.
②利用①的思路,設出坐標點P,再根據(jù)完全平方公式變形即可,求出P點坐標再求出Q點,即可根據(jù)平行四邊形性質(zhì)求出C點坐標.
(1)根據(jù)題意知a=時最小,又∵a>0,∴a=1,則a+=2.
(2)①設點P(x,),(x>0);則四邊形OAPB周長為2(x+),
當x=時,x=2,此時2(x+)有最小值8,即周長最小為8,此時點P(2,2).
②設點P(x,),(x>0);OP==,
OP最小,即x+最小,所以x=,即x=2,∴點P(2,2);
由點P(2,2),即可知Q點縱坐標是2,帶入y=(x>0)得點Q(4,2);
所以由O,P,Q三點坐標,要使OPQC四點能構(gòu)成平行四邊形,則點C坐標為:
(-2,0)、(2,0)或(6,4).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分別為D,E,F為BC中點,BE與DF,DC分別交于點G,H,∠ABE=∠CBE.
(1)線段BH與AC相等嗎?若相等給予證明,若不相等請說明理由;
(2)求證:BG2﹣GE2=EA2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,半徑均為1個單位長度的半圓O1,O2,O3,… 組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2019秒時,點P的坐標是________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD的四個角向內(nèi)翻折后,恰好拼成一個無縫隙無重合的四邊形EFGH,EH=12cm,EF=l6cm則邊AD的長是( )
A.12cmB.16cmC.20cmD.24cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標;
(2)如圖2,若AE上有一動點P(不與A,E重合)自A點沿AE方向E點勻速運動,運動的速度為每秒1個單位長度,設運動的時間為t秒(0<t<5),過P點作ED的平行線交AD于點M,過點M作AE平行線交DE于點N.求四邊形PMNE的面積S與時間t之間的函數(shù)關系式;當t取何值時,s有最大值,最大值是多少?
(3)在(2)的條件下,當t為何值時,以A,M,E為頂點的三角形為等腰三角形,并求出相應的時刻點M的坐標?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:某數(shù)學興趣小組把兩個等腰直角三角形的直角頂點重合,發(fā)現(xiàn)了一些有趣的結(jié)論.
結(jié)論一:
(1)如圖1,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,連接BD,CE,試說明△ADB≌△AEC;
結(jié)論二:
(2)如圖2,在(1)的條件下,若點E在BC邊上,試說明DB⊥BC;
應用:
(3)如圖3,在四邊形ABCD中,∠ABC=∠ADC=90°,AB=CB,∠BAD+∠BCD=180°,連接BD,BD=7cm,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D在BC上,點E在AB上,且DE∥AC,AE=5,DE=2,DC=3,動點P從點A出發(fā),沿邊AC以每秒2個單位長的速度向終點C運動,同時動點F從點C出發(fā),在線段CD上以每秒1個單位長的速度向終點D運動,設運動時間為t秒.
(1)線段AC的長=________;
(2)當△PCF與△EDF相似時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC三個頂點的坐標分別為:A(1,﹣4),B(5,﹣4),C(4,﹣1).
(1)將△ABC經(jīng)過平移得到△A1B1C1,若點C的應點C1的坐標為(2,5),則點A,B的對應點A1,B1的坐標分別為 ;
(2)在如圖的坐標系中畫出△A1B1C1,并畫出與△A1B1C1關于原點O成中心對稱的△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,且DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形.
(2)若AB=5,BD=8,求矩形AODE的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com