【題目】如圖,在RtABC中,∠C=90°,點(diǎn)DBC上,點(diǎn)EAB上,且DEAC,AE=5,DE=2,DC=3,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿邊AC以每秒2個(gè)單位長(zhǎng)的速度向終點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)F從點(diǎn)C出發(fā),在線段CD上以每秒1個(gè)單位長(zhǎng)的速度向終點(diǎn)D運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)線段AC的長(zhǎng)=________

(2)當(dāng)PCFEDF相似時(shí),求t的值.

【答案】6

【解析】試題分析:1EHACH,如圖,易得四邊形CDEH為矩形,從而得到CH=DE=2EH=CD=3,然后利用勾股定理計(jì)算出即可得到的長(zhǎng);
2由于根據(jù)兩組對(duì)應(yīng)邊的比相等且?jiàn)A角對(duì)應(yīng)相等的兩個(gè)三角形相似可分類討論:若當(dāng)時(shí),CFP∽△DFE, 時(shí),CFP∽△DEF,然后分別利用相似比得到關(guān)于的方程,再解方程求出即可.

試題解析(1)EHACH,如圖,

∴四邊形CDEH為矩形,

CH=DE=2EH=CD=3,

,

AC=CH+AH=2+4=6;

(2)CF=tPA=2t,則DF=3t,CP=62t0<t<3,

∵∠C=FDE,

∴當(dāng)時(shí),CFP∽△DFE,整理得解得 (舍去),

∴當(dāng)時(shí),CFP∽△DEF,整理得 (舍去).

綜上所述,t的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線y=2x﹣5x軸和y軸分別交于點(diǎn)A和點(diǎn)B,拋物線y=﹣x2+bx+c的頂點(diǎn)M在直線AB上,且拋物線與直線AB的另一個(gè)交點(diǎn)為N

1)如圖,當(dāng)點(diǎn)M與點(diǎn)A重合時(shí),求拋物線的解析式;

2)在(1)的條件下,求點(diǎn)N的坐標(biāo)和線段MN的長(zhǎng);

3)拋物線y=﹣x2+bx+c在直線AB上平移,是否存在點(diǎn)M,使得△OMN△AOB相似?若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】銅仁某校高中一年級(jí)組建籃球隊(duì),對(duì)甲、乙兩名備選同學(xué)進(jìn)行定位投籃測(cè)試,每次投10個(gè)球,共投10次.甲、乙兩名同學(xué)測(cè)試情況如圖所示:

根據(jù)圖6提供的信息填寫(xiě)下表:

平均數(shù)

眾數(shù)

方差

如果你是高一學(xué)生會(huì)文體委員,會(huì)選擇哪名同學(xué)進(jìn)入籃球隊(duì)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:己知:對(duì)于實(shí)數(shù)a≥0b≥0,滿足a+b≥2,當(dāng)且僅當(dāng)a = b時(shí),等號(hào)成立,此時(shí)取得代數(shù)式a+b的最小值.

根據(jù)以上結(jié)論,解決以下問(wèn)題:

(1)拓展:若a>0,當(dāng)且僅當(dāng)a=___時(shí),a+有最小值,最小值為____;

(2)應(yīng)用:

如圖1,已知點(diǎn)P為雙曲線y=(x>0)上的任意一點(diǎn),過(guò)點(diǎn)PPA⊥x軸,PBy軸,四邊形OAPB的周長(zhǎng)取得最小值時(shí),求出點(diǎn)P的坐標(biāo)以及周長(zhǎng)最小值:

如圖2,已知點(diǎn)Q是雙曲線y=(x>0)上一點(diǎn),且PQ∥x軸, 連接OPOQ,當(dāng)線段OP取得最小值時(shí),在平面內(nèi)取一點(diǎn)C,使得以0P、Q、C為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)A種產(chǎn)品,它的成本是6/件,售價(jià)是8/件,年銷售量為5萬(wàn)件.為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告,根據(jù)經(jīng)驗(yàn),每年投入的廣告費(fèi)是x萬(wàn)元,產(chǎn)品的年銷售量將是原銷售量的y倍,且yx之間滿足我們學(xué)過(guò)的二種函數(shù)(即一次函數(shù)和二次函數(shù))關(guān)系中的一種,它們的關(guān)系如下表:

x(萬(wàn)元

0

0.5

1

1.5

2

y

1

1.275

1.5

1.675

1.8

(1)求yx的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍)

(2)如果把利潤(rùn)看作是銷售總額減去成本費(fèi)用和廣告費(fèi)用,試求出年利潤(rùn)W(萬(wàn)元)與廣告費(fèi)用x(萬(wàn)元)的函數(shù)關(guān)系式,并計(jì)算每年投入的廣告費(fèi)是多少萬(wàn)元時(shí)所獲得的利潤(rùn)最大?

(3)如果公司希望年利潤(rùn)W(萬(wàn)元)不低于14萬(wàn)元,請(qǐng)你幫公司確定廣告費(fèi)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,直線AB、CD相交于點(diǎn)O,OEOC,OF平分∠AOE.

1)若,則∠AOF的度數(shù)為______;

2)若,求∠BOC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)O點(diǎn)作射線OC,使,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM在直線AB的下方.

1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時(shí)三角板旋轉(zhuǎn)的角度為______度;

2)在(1)旋轉(zhuǎn)過(guò)程中,當(dāng)旋轉(zhuǎn)至圖3的位置時(shí),使得OM在∠BOC的內(nèi)部,ON落在直線AB下方,試探究∠COM與∠BON之間滿足什么等量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列語(yǔ)句中正確的有(

經(jīng)過(guò)一點(diǎn),有且只有一條直線與已知直線平行;有公共頂點(diǎn)且和為的兩個(gè)角是鄰補(bǔ)角;兩條直線被第三條直線所截,同旁內(nèi)角互補(bǔ);不相交的兩條直線叫做平行線;直線外的一點(diǎn)到已知直線的垂線段叫做點(diǎn)到直線的距離;

A.0個(gè);B.1個(gè);C.2個(gè);D.3個(gè);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,△ABC中,,BD平分∠ABC,BC上有動(dòng)點(diǎn)P

1DPBC時(shí)(如圖1),求證:;

2DP平分∠BDC時(shí)(如圖2),BD、CD、CP三者有何數(shù)量關(guān)系?

查看答案和解析>>

同步練習(xí)冊(cè)答案