下列運算正確的是( 。
A. a0=1 B. 3a•4a=12a C. a12÷a3=a4 D. (a3)4=a12
科目:初中數(shù)學 來源: 題型:
情景觀察:將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示,將將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是 ,∠CAC′= °;
問題探究:如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
拓展延伸:如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H,若AB=kAE、AC=kAF,探究HE與HF之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知:如圖,直線AB經(jīng)過⊙O上的點C,OA與⊙O 交于點D,若OA=OB,AD=CD,∠A=30°
(1)求證:直線AB是⊙O的切線;
(2)若AB=4,求OA的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知AB是⊙O的弦,CD是⊙O的直徑,CD⊥AB,垂足為E,且點E是OD的中點,⊙O的切線BM與AO的延長線相交于點M,連接AC,CM.
(1)若AB=4,求的長;(結(jié)果保留π)
(2)求證:四邊形ABMC是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com