【題目】如圖,等邊三角形ABC的邊長為3,D、E分別是AB、AC上的點,且AD=AE=2,將△ADE沿直線DE折疊,點A的落點記為A′,則四邊形ADA′E的面積S1與△ABC的面積S2之間的關系是( )
A. B. C. D.
科目:初中數學 來源: 題型:
【題目】某市舉行長跑比賽,運動員從甲地出發(fā)跑到乙地后,又沿原路線跑回起點甲地.如圖是某運 動員離開甲地的路程 s(km)與跑步時間 t(min)之間的函數關系(OA、OB 均為線段).已 知該運動員從甲地跑到乙地時的平均速度是 0.2 km/min,根據圖像提供的信息,解答下列問 題:
(1)a= km;
(2)組委會在距離起點甲地 3 km 處設立了一個拍攝點 P,該運動員從第一次過 P 點到第二
次過 P 點所用的時間為 24 min.
①求 AB 所在直線的函數表達式;
②該運動員跑完全程用時多少 min?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在電線桿CD處引拉線CE,CF固定電線桿,拉線CE和地面所成的角∠CED=67°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為37°,求拉線CE的長(參考數據:sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tsn37°≈).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,四邊形OABC是長方形,O為原點,點A在x軸上,點C在y軸上且A(10,0),C(0,6),點D在AB邊上,將△CBD沿CD翻折,點B恰好落在OA邊上點E處.
(1)求點E的坐標;
(2)求折痕CD所在直線的函數表達式;
(3)請你延長直線CD交x軸于點F. ①求△COF的面積;
②在x軸上是否存在點P,使S△OCP=S△COF?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,F為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠2.
(1)若CE=1,求BC的長;
(2)求證:AM=DF+ME.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,a、b、c 均為非零實數,且 a>b>c,關于 x 的一元二次方程ax2 bx c 0 有兩個實數根 x1和 2。(1)4a +2b +c _____0,a _____0,c _________0(填“>”,“=”,“<”)(2)方程 ax2 bx c 0 的另一個根 x1=_______(用含 a、c 的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】材料一:一個正整數x能寫成x=a2﹣b2(a,b均為正整數,且a≠b),則稱x為“雪松數”,a,b為x的一個平方差分解,在x的所有平方差分解中,若a2+b2最大,則稱a,b為x的最佳平方差分解,此時F(x)=a2+b2.
例如:24=72﹣52,24為雪松數,7和5為24的一個平方差分解,32=92﹣72,32=62﹣22,因為92+72>62+22,所以9和7為32的最佳平方差分解,F(32)=92+72
材料二:若一個四位正整數,它的千位數字與個位數字相同,百位數字與十位數字相同,但四個數字不全相同,則稱這個四位數為“南麓數”.例如4334,5665均為“南麓數”.
根據材料回答:
(1)請直接寫出兩個雪松數,并分別寫出它們的一對平方差分解;
(2)試證明10不是雪松數;
(3)若一個數t既是“雪松數”又是“南麓數”,并且另一個“南麓數”的前兩位數字組成的兩位數與后兩位數字組成的兩位數恰好是t的一個平方差分解,請求出所有滿足條件的數t中F(t)的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABOC放置在直角坐標系中,點A(10,4),點B(6,0),反比例函數y=(x>0)的圖象經過點C.
(1)求該反比例函數的表達式.
(2)記AB的中點為D,請判斷點D是否在該反比例函數的圖象上,并說明理由.
(3)若P(a,b)是反比例函數y=的圖象(x>0)的一點,且S△POC<S△DOC,則a的取值范圍為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com