如圖,在⊙O中,AB、AC為互相垂直的兩條弦,OD⊥AB于點D ,OE⊥AC于點E,若AB=8cm,AC=6cm求⊙O的半徑.
5
解析試題分析:首先由AB、AC是互相垂直的兩條弦,OD⊥AB,OE⊥AC,易證得四邊形OEAD是矩形,根據(jù)垂徑定理,可求得AE與AD的長,然后利用勾股定理即可求得⊙O的半徑OA長.
連接AO
∵OE⊥AC,OD⊥AB,AC=6,AB=8
∴AE=3,AD=4
又OE⊥AC,OD⊥AB,AC⊥AB
∴四邊形ADOE為矩形
∴AD=OE=5,AE=OD=3
∴OA= 5
考點:此題主要考查了垂徑定理,矩形的判定與性質(zhì)及勾股定理的綜合應(yīng)用
點評:解答本題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意特殊圖形的性質(zhì)的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com