【題目】如圖,一次函數(shù)的圖像分別與x軸、y軸交于點(diǎn)A、B,以線段AB為腰在第二象限內(nèi)作等腰Rt△ABC,∠BAC=90°.
(1)直接寫出A、B兩點(diǎn)的坐標(biāo),并求線段AB的長;
(2)求過B、C兩點(diǎn)的直線的函數(shù)表達(dá)式.
【答案】(1)A(-3,0),B(0,2),AB=;(2)y=-0.2x+2;
【解析】
(1)先根據(jù)一次函數(shù)的解析式把x=0或y=0代入,即可求出A、B兩點(diǎn)的坐標(biāo),根據(jù)勾股定理即可求出AB的長;
(2)作CD⊥x軸于點(diǎn)D,由全等三角形的判定定理可得出△ABO≌△CAD,由全等三角形的性質(zhì)可知OA=CD,故可得出C點(diǎn)坐標(biāo),再用待定系數(shù)法即可求出直線BC的解析式.
解:(1)∵一次函數(shù)中,
令x=0得:y=2;
令y=0,解得x=-3,
∴A的坐標(biāo)是(-3,0),B的坐標(biāo)是(0,2),
∴AB=;
(2)如圖,作CD⊥x軸于點(diǎn)D.
∵∠BAC=90°,
∴∠OAB+∠CAD=90°,
又∵∠CAD+∠ACD=90°,
∴∠ACD=∠BAO.
在△ABO與△CAD中,
,
∴△ABO≌△CAD(AAS),
∴OB=AD=2,OA=CD=3,OD=OA+AD=5,
則C的坐標(biāo)是(-5,3),
設(shè)直線BC的解析式是y=kx+b,
根據(jù)題意得:,
解得:k=-0.2,b=2,
∴直線BC的解析式是y=-0.2x+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E,F在菱形ABCD的對(duì)邊上,AE⊥BC.∠1=∠2.
(1)判斷四邊形AECF的形狀,并證明你的結(jié)論.
(2)若AE=4,AF=2,試求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市公交快速通道開通后,為響應(yīng)市政府“綠色出行”的號(hào)召,家住新城的小王上班由自駕車改為乘坐公交車.已知小王家距上班地點(diǎn)18千米,他用乘公交車的方式平均每小時(shí)行駛的路程比他用自駕車的方式平均每小時(shí)行駛的路程的2倍還多9千米,他從家出發(fā)到達(dá)上班地點(diǎn),乘公交車方式所用時(shí)間是自駕車方式所用時(shí)間的.小王用自駕車方式上班平均每小時(shí)行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD中,AB=AD,將△ABD沿BD對(duì)折,使點(diǎn)A翻折到點(diǎn)C,E是BD上一點(diǎn)。且BE>DE,連接AE并延長交CD于F,連接CE.
(1)依題意補(bǔ)全圖形;
(2)判斷∠AFD與∠BCE的大小關(guān)系并加以證明;
(3)若∠BAD=120°,過點(diǎn)A作∠FAG=60°交邊BC于點(diǎn)G,若BG=m,DF=n,求AB的長度(用含m,n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假到了,即將迎來手機(jī)市場的銷售旺季.某商場銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:
甲 | 乙 | |
進(jìn)價(jià)(元/部) | 4000 | 2500 |
售價(jià)(元/部) | 4300 | 3000 |
該商場計(jì)劃投入15.5萬元資金,全部用于購進(jìn)兩種手機(jī)若干部,期望全部銷售后可獲毛利潤不低于2萬元.(毛利潤=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)若商場要想盡可能多的購進(jìn)甲種手機(jī),應(yīng)該安排怎樣的進(jìn)貨方案購進(jìn)甲乙兩種手機(jī)?
(2)通過市場調(diào)研,該商場決定在甲種手機(jī)購進(jìn)最多的方案上,減少甲種手機(jī)的購進(jìn)數(shù)量,增加乙種手機(jī)的購進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購進(jìn)這兩種手機(jī)的總資金不超過16萬元,該商場怎樣進(jìn)貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個(gè)結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)DE=AE時(shí),四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是( 。
A.②③B.②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A地在數(shù)軸上表示的數(shù)為-16,AB兩地相距50個(gè)單位長度.小明從A地出發(fā)去B地,以每分鐘2個(gè)單位長度的速度行進(jìn),第一次他向左1單位長度,第二次向右2單位長度,第三次再向左3單位長度,第四次又向右4單位長度…,按此規(guī)律行進(jìn).
(1)求出B地在數(shù)軸上表示的數(shù);
(2)若B地在原點(diǎn)的右側(cè),經(jīng)過第8次行進(jìn)后小明到達(dá)點(diǎn)P,此時(shí)點(diǎn)P與點(diǎn)B相距幾個(gè)單位長度?8次運(yùn)動(dòng)完成后一共經(jīng)過了幾分鐘?
(3)若經(jīng)過n次(n為正整數(shù))行進(jìn)后,小明到達(dá)點(diǎn)Q,請(qǐng)你直接寫出:點(diǎn)Q在數(shù)軸上表示的數(shù)應(yīng)如何表示?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,已知AB=6,BC=9, .對(duì)角線AC、BD交于點(diǎn)O.動(dòng)點(diǎn)P在邊AB上,⊙P經(jīng)過點(diǎn)B,交線段PA于點(diǎn)E.設(shè)BP= x.
(1)求AC的長;
(2)設(shè)⊙O的半徑為y,當(dāng)⊙P與⊙O外切時(shí),求y關(guān)于x的函數(shù)解析式,并寫出定義域;
(3)如果AC是⊙O的直徑,⊙O經(jīng)過點(diǎn)E,求⊙O與⊙P的圓心距OP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,CD⊥AB于點(diǎn)D,BD=9,BC=15,AC=20.
(1)求CD的長;
(2)求AB的長;
(3)判斷△ABC的形狀.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com